一、THE REAL IN TIME CT MONITORING OF THE MESO-DAMAGE EVOLUTION LAW OF SANDSTONE UNDER TRIAXIAL COMPRESSION(论文文献综述)
郑强强[1](2021)在《动载作用下损伤砂岩的力学特性与破裂特征》文中认为与未受扰动的岩体相比,受人类采掘活动的影响,赋存于自然界中的岩体通常处于不同程度的损伤状态。损伤岩体内部随机分布不同尺度、规模、产状的节理和裂隙,这些弱面劣化岩体的内部结构,同时也削弱了岩体的强度。鉴于此,对岩土工程中岩体的工程设计、稳定性分析和解危措施,也与未受扰动的岩体有所不同。虽然,破岩工作机械化程度,随着技术的革新不断提升,但部分机械作业不能适应的区域仍采用爆破破岩。爆破作业诱发的爆破震动和冲击波,影响临近岩体的稳定性,不仅给工程安全埋下隐患,也威胁施工人员的生命安全。因此,研究动载作用下损伤岩体的力学特性和破裂特征,对安全生产和防护有着重要的意义。本文以损伤砂岩为研究对象,基于声发射和延时双差层析成像技术,分析受载砂岩内的损伤程度、破裂模式和速度结构演化。采用不同上限的循环静载作用于砂岩,并用CT扫描成像表征砂岩的损伤程度。然后,采用高速摄像和分离式霍普金森压杆,对不同损伤程度的砂岩试件开展冲击动力学试验。探究冲击荷载作用下损伤砂岩的强度变化、能量演化、裂纹扩展和破碎特征等问题。最后,采用工业CT扫描技术,分析爆炸荷载作用下损伤砂岩的裂纹扩展和破裂特征。得到以下结论:以声发射撞击比HR表征受载砂岩的损伤程度,并构建能定量描述包括原生裂隙压密闭合阶段和峰后阶段的受载全过程的损伤力学模型。依据监测到的声发射信号特征,将砂岩的受载过程依次划分为初始撞击阶段、撞击稳定阶段、撞击失稳阶段,这三个阶段的破裂模式依次是以剪切破坏、张拉破坏和剪切破坏为主。考虑岩体的非均质性,采用延时双差层析成像技术,反演不同应力水平下,受载砂岩任一截面的速度结构。速度结构随着荷载的增加而增大,岩石的损伤也逐渐增加,在破坏失稳阶段增长率和损伤程度都达到最大。此外,在受载砂岩进入塑性阶段后,其内部存在小部分区域受“隔离状态”的岩块,在裂隙的隔离和岩石扩容的综合作用下,岩块在破坏失稳阶段仍出现速度结构增加的现象。砂岩的损伤弱化了其动态力学强度。在冲击荷载的压缩和劈裂作用下,随着损伤程度的增大,初次起裂裂纹的数量、长度和宽度都增加,损伤砂岩的破碎程度和破碎岩块的动能也都有所增加。而当砂岩的损伤程度一定时,损伤砂岩初次起裂裂纹的数量、长度和宽度以及破碎程度、破碎岩块动能、压剪区域的力学显现等,都随着冲击气压的增加而增大。在冲击荷载劈裂拉伸作用下,杆-岩接触面的压剪区域的破碎范围和程度,随着损伤程度和冲击气压的增大而增加。冲击荷载作用下,砂岩的耗能占比,随着砂岩损伤程度和冲击气压的增大,都呈现出指数函数增大的规律。爆炸荷载作用下,损伤砂岩底部表面裂纹的扩展范围、裂隙宽度和数量,都随砂岩初始损伤程度的增加逐渐增大。上部爆破漏斗和下部砂岩裂隙的尺寸,也随着损伤程度的增加而增大。由CT成像的试验结果可知,爆炸荷载作用下砂岩内的损伤程度、损伤区域、裂隙的尺度和破裂程度,都随着初始损伤程度的增加而逐渐增大,且沿平行于边长方向贯穿裂缝的宽度和长度,也随着损伤程度的增加而增大。受循环静载作用时的端部套箍作用和砂岩尺寸效应的影响,爆炸荷载作用下,损伤砂岩内贯穿炮孔中心直至砂岩试件边界的裂隙,都是沿着静载的加载方向产生。图[92] 表[17] 参[278]
张纯旺[2](2021)在《废弃矿井采空区覆岩裂隙导通机理及多尺度渗流特性研究》文中认为随着落后产能煤矿的逐步淘汰,我国关闭矿井的数量不断增加,但废弃矿井采空区中仍赋存大量的煤炭、水、瓦斯等可利用资源,该资源的二次开发利用对区域经济的转型发展具有重要的现实意义,由于废弃矿井采空区内煤岩体破裂状况不清,水、瓦斯等流体赋存状态复杂,难以进行精准高效开发利用。其中覆岩破断裂隙是影响流体赋存的关键因素,它作为通道对采空区内水、瓦斯等流体的运移具有主导作用,它直接决定了采空区内水、瓦斯的空间赋存位置。因此探究废弃矿井采空区覆岩裂隙导通机理及多尺度渗流特性,可为废弃矿井资源的二次开发利用提供理论支撑。本文以废弃矿井采空区资源开发利用为研究目标,针对覆岩裂隙导通机理及其多尺度渗流特性,采用室内试验、理论分析和数值模拟相结合的手段开展研究。通过单轴压缩试验探究了煤岩体的力学性质及其破裂过程,基于弹塑性力学理论探究了顶板覆岩破断力学机制,从标准试件的破裂和块体的断裂两个尺度研究了覆岩破断裂机制及裂隙通道特征;分别对原生裂隙煤岩体的渗流特性开展了研究,采用多场耦合试验压力机对原生裂隙岩体开展了水力耦合渗流试验,利用CT扫描技术从微细观的角度探究了原生裂隙煤体的孔裂隙特征及其渗流特性;最后针对采空区中瓦斯上浮和离层水下渗的现象,采用两相流界面追踪方法对采空区裂隙网络内水气两相渗流特性进行了模拟分析。主要研究内容及结果如下:(1)通过单轴压缩试验对煤岩体的力学性能进行了测试,联合声发射监测系统和数字散斑全场应变测量系统对破裂过程进行了监测,通过对比煤和砂岩的力学特性得出,煤与砂岩在单轴抗压强度、变形特征及破坏模式等方面存在明显的不同,砂岩的脆性破坏特征更加显着;声发射能量变化反映了破裂过程中弹性能的积累和释放过程,不同应力水平下声发射定位点演化特征呈现了煤岩体内部破裂及其扩展的方向,试件破坏的瞬间伴随能量的急剧释放破裂定位点骤增;采用数字散斑全场应变测量方法对试件表面位移场和应变场进行了定量监测,标记点的位移曲线可划分为初始变形、等速变形和加速变形三个阶段,试件表面位移场及应变场反映了裂隙从底部向顶部扩展呈现张拉破坏的模式。联合监测突破了传统以定性为主来判断破裂过程的局限性,更全面的反映了煤岩体破裂的过程。(2)从弹塑性力学的角度研究了覆岩破断的力学机制及断裂后裂隙的张开度特征,根据砌体梁结构关键块体运动演化过程及超前应力分布情况,建立了线性增压荷载悬臂梁模型,采用弹性力学应力逆解法获得了内应力分量解析解,结合Mohr-Coulomb剪切屈服破坏准则,推导了块体破裂迹线隐函数方程式,结果表明破裂迹线的形态与先天开采条件及岩层自身的力学特性相关,破裂迹线呈现“竖对号”的形态,说明在破裂的过程中裂纹会发生偏转,其中拐点的位置与岩层的内聚力和内摩擦角有关。另外随着块体长度的增加块体回转角度越来越小,相对应的张开度变化特征与目前线性假设存在明显的不同,回转后张开度沿破裂线呈现先增大后减小再增大的趋势,破断裂隙通道开度变化存在阈值。(3)采用多场耦合试验压力机对原生裂隙砂岩开展了不同围压及不同渗透压下的渗流试验,给出了加卸载路径下渗流流量随围压及渗透压变化的渗流规律,在加载过程中不同围压条件下渗流流量随渗透压表现出多样的变化趋势,随着围压的增大渗流流量增长类型分别呈现幂律型、线性型、指数型和双线性增长变化;在卸荷过程中随着围压的降低渗流流量呈现递增的趋势,但受到加载历史的影响,卸载路径下的渗流流量明显低于加载路径。进一步采用扫描仪对裂隙面的三维形貌特征进行了表征,并对各裂隙面的起伏高度平均值、标准偏差、均方根一阶导数、分形维数等进行了统计学分析,其中原生节理粗糙度系数集中在8~10的范围内,分形维数在1.07~1.16之间,裂隙面起伏高度频率直方图呈现高斯分布规律,且粗糙度系数越大其峰值所在的区间愈向右侧偏移。基于扫描数据对流体在裂隙面的渗流进行了模拟分析,结果表明裂隙面存在明显的优势渗流路径,水头压力分布存在明显的过渡区,由于裂隙面粗糙的几何形貌特征引起渗流流线及速度场呈现明显的非均匀分布,当流体从顶部向下方流动时,流体向开度较大的方向运移,造成裂隙面内流体分布的不均形成优势渗流,优势渗流路径的存在是造成粗糙裂隙面非达西渗流的主要原因。(4)利用CT扫描技术对原生裂隙煤体进行扫描试验,获得裂隙煤体的内部孔裂隙结构特征,采用三维可视化软件对裂隙煤体提取了表征单元,并对孔裂隙模型进行了三维重构,可以看出该原生裂隙煤体内部存在一条明显的宏观裂纹,周围分布次生裂隙及孔隙,孔隙在局部区域呈现连片状聚集分布,同时存在一些孤立的微孔。通过建立孔隙网络模型直观的再现了宏观裂缝和微观孔隙的分布情况,使原生裂隙煤体内部储层结构得到了比较精细的表征。对比分析裂隙煤表征单元体的渗流模拟结果可以看出,原始不含裂隙的煤体渗透率较低,渗流路径中内部几乎没有流线分布,而含裂隙的模拟结果表明流体沿主裂隙向下运移的同时,还会向周围连通的次生裂隙及孔中运移,形成了良好的渗流通道,导致了原生裂隙煤体渗透率的增大。(5)结合数字图像处理技术与相似模拟实验,对采空区覆岩裂隙几何参数(宽度、迹长、面积、周长和倾角等)进行了统计分析,构建了大尺度采空区裂隙网络几何模型,基于废弃矿井采空区上方离层水下渗和垮落带瓦斯上浮的现象,采用界面追踪模型精细地捕捉了水气两相渗流的过程。覆岩采动裂隙整体呈现梯形状,内部层间离层裂隙与纵向破断裂隙纵横交错、互相贯通,两种裂隙的开度、面积和周长呈现指数分布,裂隙迹长呈现对数正态分布,裂隙倾角呈现正态分布;模拟结果表明由于裂隙内渗流速度的不均衡性,在采空区两侧裂隙形成了明显的优势渗流通道,同时发现在高位横向层间离层裂隙存在瓦斯滞留区,裂隙两端存在被封堵、交叉点处存在偏流等现象,揭示了大尺度裂隙网络内水气两相渗流特性。本文针对采空区破断裂隙进行了全方位多尺度的研究,理清了采空区破断裂隙的空间几何分布形态,揭示了废弃矿井采空区裂隙网络水气两相多尺度渗流特性,研究成果对于废弃矿井采空区资源的再利用具有一定的指导意义。
赵涛[3](2021)在《冻结裂隙岩体力学特性及冲击动力学响应研究》文中进行了进一步梳理随着我国“一带一路”倡议的推进,国家大量基础设施的建设正在或将在环青藏高原边缘区和新疆天山山脉等高寒地区进行。高寒地区岩体长期处于冻结状态,冻结岩体的力学特性以及在冲击动力荷载作用下的损伤扩展、破坏行为是决定寒区岩体工程施工安全的关键因素。岩体内部含有大量的孔隙、裂隙等初始缺陷,造成岩体结构的复杂性;加之环境因素和施工扰动影响的多样性,导致冻结岩体的静、动态力学特性、力学本构关系、损伤破坏机制等关键问题尚无明确解答,严重制约了寒区岩石工程的优化设计与安全施工。本文以完整砂岩和裂隙砂岩为研究对象,采用室内试验、理论分析和数值模拟相结合的方法,研究了冻结完整和冻结裂隙砂岩的力学特性、冻结强化效应及主控机制、冲击压缩及劈裂破坏特性。分析了冻结完整砂岩和裂隙砂岩强度、变形特性随冻结温度及裂隙倾角的变化规律,揭示了冻结强化效应的宏-细观机制,研究了冲击荷载作用下冻结裂隙砂岩的损伤破裂特性;并通过数值模拟研究冻结裂隙砂岩在冲击压缩及劈裂荷载作用下内部的应力分布、应力传播等过程;最后,基于颗粒增强理论和宏-细观损伤理论,建立了考虑宏-细观初始损伤的动态损伤本构模型,并对冻结裂隙砂岩动态破坏关键影响因素进行了分析。通过上述研究,主要得到以下结论:(1)冻结完整砂岩的单轴抗压强度、抗拉强度和弹性模量均与冻结温度呈负相关关系,但其变化速率在不同温度区间内差异性显着。常温状态下试样中存在自由水、毛细水和吸附水。随着冻结温度的降低,未冻水含量先快速降低,后缓慢降低。温度从0℃降至-4℃时,未冻水含量快速降低,孔隙中冰含量快速增大,冰对砂岩骨架的支撑作用使得其强度快速升高。单轴抗压强度主要受未冻水膜厚度和冻胀的影响。(2)冻结裂隙砂岩的压缩强度及弹性模量随裂隙倾角的增大呈先减后增的趋势,裂隙倾角为30°时其强度最小,且达到声发射峰值振铃计数的时间最晚。冻结裂隙砂岩的起裂角随裂隙倾角的增大而减小;起裂应力与起裂时间随裂隙倾角的变化趋势,均为先减小后增大。冻结对裂隙砂岩具有显着的强化作用,随着裂隙倾角的增加,冻结强化包括对裂隙的支撑作用、冰-岩界面胶结作用及对裂隙端部应力集中效应的缓解。(3)冻结裂隙砂岩试样的动态压缩强度随温度的降低而增大。裂隙砂岩试样动态压缩强度在0℃~-8℃之间增长速率较小。冻结裂隙砂岩试样动态压缩强度随着裂隙倾角的增大呈现出先减小后增大的趋势,除0℃外,其它温度下均在45°时强度出现拐点。冲击荷载下,不论裂隙倾角的大小,首先发生破坏的是裂隙冰,而后岩石基质发生破坏;0°、15°、30°试样基本保持完整,只有端面一小部位出现了破坏;45°、60°、75°和90°试样出现了贯穿试样的宏观裂纹,且裂纹大多为沿着初始裂隙的尖端进行扩展和贯通的,且存在平行于压应力方向的张拉破坏和与压应力呈一定夹角的剪切破坏,属于混合破坏模式。(4)冻结裂隙砂岩的动态劈裂强度均随着温度的降低而增大,近似呈指数关系。不同倾角冻结裂隙砂岩的动态劈裂破坏模式有共同特征也有显着差异。共同特征包括:①裂隙起裂都发生于加载端一侧初始裂隙端部附近,且均为拉伸裂纹;②在试样破坏过程中裂隙冰与两侧岩石均发生脱粘破坏。差异主要体现在:①当倾角较小时,试样的破坏由拉伸裂纹的扩展控制,表现为垂直于加载方向的拉伸破坏;而当倾角较大时,拉伸裂纹和剪切裂纹共同控制试样的破坏。②当倾角较小时,裂隙冰与岩石界面为拉伸脱粘破坏,且发生于加载初期;当倾角较大时,裂隙冰与岩石界面为剪切破坏,且发生于试样整体破坏之前。冻结作用对裂隙砂岩的动态劈裂强度具有显着的强化效应。(5)基于试验测试结果,将裂隙砂岩认为兼具宏观裂隙与微细观缺陷的复合损伤材料;并基于颗粒增强微细观损伤、宏观损伤组合模型基础理论,构建考虑细观损伤的冻结裂隙砂岩动态本构模型。同时考虑宏观缺陷的影响作用,提出了冻结裂隙砂岩动态本构模型方程;并通过不同冻结温度、不同裂隙倾角的冻结裂隙砂岩试验曲线与本构模型结果对比分析验证本构模型效果;最后,探究裂隙倾角、冻结温度对冻结裂隙砂岩力学指标的影响特征,发现:①裂隙倾角对冻结裂隙砂岩动态强度具有显着控制作用,随裂隙角度增大,均呈现“U”型发育特征,而随着裂隙倾角增大,动态压缩强度出现一定差异性现象,其与未冻水重力作用运移析出有关;②随着冻结温度的降低,动态压缩强度呈现整体增长的趋势,待进入完全冻结阶段后强度快速增加。
曹孟涛[4](2021)在《高温下砂质泥岩物理力学特性的各向异性演化规律及其应用》文中认为油页岩是一种潜在的能源,未来可作为石油和天然气的补充和替代能源。本文主要围绕原位注热开采油页岩过程中砂质泥岩盖层的稳定性展开研究,考虑砂质泥岩的物理力学性质具有显着各向异性,利用热膨胀仪、导热测定仪、低渗岩石渗透率测量装置、高温三轴岩石渗透率测量设备以及高温岩石压力机等设备,研究高温作用下各向异性砂质泥岩的热膨胀系数、导热系数、渗透率和力学参数(弹性模量E、抗压强度σp、抗拉强度σt、内聚力c和摩擦角φ等)随温度的变化规律,探讨高温三轴应力作用下各向异性砂质泥岩在全应力-应变过程中的渗透率演化规律,并通过XRD和TG测试等微观手段分析高温的作用下砂质泥岩矿物结构和成分的变化规律,最后,基于横观各向同性模型,并考虑岩石热物理(热膨胀系数和导热系数)性质和渗透性质的各向异性,建立流-固-热耦合作用的数学模型并给出有限元解法,并以油页岩原位注热开采为工程背景,模拟注热过程中砂质泥岩盖层的温度场、位移场、渗流场以及物理参数的时空演化规律,以期为油页岩原位注热开采工程盖层的稳定性研究提供理论支撑。本文得到的主要结论如下:(1)砂质泥岩的热膨胀系数和导热系数受温度的作用很明显,且表现出很强的各向异性。砂质泥岩在平行、垂直层理方向的导热系数都随着温度升高而降低,但平行层理方向的导热系数始终大于垂直层理的导热系数,二者的比值维持在1.246的水平。砂质泥岩在平行、垂直层理方向的纵波波速都随着温度的增加而不断降低,但具体规律有所差异,且二者的比值随着温度的增加不断增加,呈现三阶段特征:I缓慢增加段(20℃~200℃)、II快速增加段(200℃~500℃)、III缓慢增加段(200℃~500℃)。在垂直层理方向上,砂质泥岩渗透率随着温度的升高而不断增加,呈现三阶段特征:20℃~200℃,渗透率增加量虽小,但增幅为63倍左右;200℃~400℃,渗透率基本稳定;400℃~600℃,渗透率增幅为6.96倍左右;而在平行层理方向上,砂质泥岩渗透率随着温度的升高呈指数增加,最高增幅可达23倍左右。在相同温度、体积应力和渗透压条件下,砂质泥岩在平行层理方向的渗透率比垂直层理方向大1~2个数量级,渗透率比值k2/k1随着温度的升高呈现先降低,再升高,最后下降的趋势。基于渗透率与体积应力和孔隙压力的经验公式,并考虑温度的作用,建立了考虑温度、体积应力以及孔隙压力作用下的各向异性砂质泥岩渗透率公式。(2)通过对不同温度作用下砂质泥岩在垂直/平行层理方向的三轴压缩过程中的渗透率演化规律进行试验研究,得出了以下结论:在垂直层理和平行层理方向上400℃、500℃、600℃高温下的全应力-应变加载变形破坏规律基本一致,砂质泥岩渗透率变化规律与破坏演化规律整体上具有一致性。在垂直层理方向上,渗透率在裂缝压密阶段渗透率呈下降趋势;在线弹性阶段和裂纹的稳定扩展阶段,渗透率出现稳态增加趋势;在裂纹的非稳定扩展阶段,渗透率出现急剧增加;而在平行层理方向上,裂缝压密阶段没有体现出来,在线弹性阶段和裂缝的稳定扩展阶段,渗透率稳定增加,在裂纹的非稳定扩展阶段,渗透率快速增加。在垂直或者平行层理方向上,随着温度的增加,相同的轴向应力点所对应的渗透率逐渐增加;在相同的温度条件下,在加载过程中,相同的轴向应力点,平行层理方向的渗透率要远大于垂直层理方向。砂质泥岩所受的温度越高,相同的应力点所对应的应变值越大,但砂质泥岩的破坏强度降低。在垂直、平行层理方向的砂质泥岩破裂形式主要为单剪切面破坏,但在破坏机制上仍有一些差异:在平行层理方向,主剪切面伴随着沿竖直方向(层理方向)的多组破裂面,且温度越高,破裂面越发育。(3)通过对实时温度作用下(20℃-600℃)各向异性砂质泥岩在单轴压缩过程中的变形特征、破坏机制和声发射特征进行研究,发现:(1)荷载垂直于层理方向时,砂质泥岩的弹性模量随着温度的升高先略有增加(20℃~100℃),而后线性降低(100℃~600℃);当荷载平行于层理方向时,弹性模量随着温度的升高近似呈负指数下降。砂质泥岩在垂直、平行层理方向的弹性模量比值E1/E2随着温度的升高呈现三阶段变化特征:先增加(20℃~100℃),再线性降低100℃~500℃,然后保持不变500℃~600℃,且比值一直大于1;(2)荷载垂直或者平行于层理方向时,砂质泥岩的抗压强度随着温度的升高,基本上都呈线性下降,砂质泥岩在垂直、平行层理方向的抗压强度比值σp1/σp2,随着温度温度的升高,近似呈线性增加,在600℃时,二者比值从20℃时的1.73增至2.76。(3)荷载垂直于层理方向时,随着温度的升高,砂质泥岩的峰值应变近似呈指数增加趋势;荷载平行于层理方向时,砂质泥岩的峰值应变随着温度的升高呈阶段性变化特征,但整体上呈降低趋势。在20℃~600℃温度范围内,砂质泥岩在垂直层理方向的脆性度指数比平行层理方向的脆性指数高2-3个数量级。(4)载荷垂直于层理方向时,随着温度的升高,破坏形式由拉伸破坏向剪切破坏转变;而载荷平行于层理方向时,砂质泥岩的破坏形式主要为“拉伸”破坏类型。(4)通过研究各向异性砂质泥岩的抗拉特性以及抗剪切特性随温度的变化关系,得到的结论如下:(1)当加载力垂直、平行正交于层理面时,抗拉强度都随着温度的增加而持续下降,但下降规律与幅度有所差异,在同一温度条件下,加载力与层理面正交时的抗拉强度3>加载力与层理面垂直时的抗拉强度1>加载力与层理面平行时的抗拉强度2,但三者的相对大小关系随温度的变化规律有所不同;(2)随着温度的升高,当剪切面与层理面垂直、平行、正交时,砂质泥岩的内聚力随着温度的升高近似呈线性下降,而内摩擦角变化不大。在相同的温度条件下,剪切面与层理面正交时的内聚力c3>剪切面与层理面垂直时的内聚力c1>剪切面与层理面平行时的内聚力c2。(3)剪切面与层理面的相对位置对砂质泥岩的破坏形式有重要影响。当剪切面与层理面垂直时,剪切破坏面不规则,表现出延性破坏特征;当剪切面与层理面平行时,剪切破坏面为单一的规则平面,表现出脆性破坏特征;而当剪切面与层理面正交时,砂质泥岩的破坏形态为具有一定宽度的“剪切带”,表现为延性破坏特征。(5)基于横观各向同性模型,引入油页岩和砂质泥岩顶底板的物理力学参数(导热系数、膨胀系数、渗透系数、弹性模量等)与温度的变化规律,并考虑二者的物理力学参数的各向异性,建立了考虑油页岩和砂质泥岩的物理力学参数与温度关系的热-流-固耦合数学模型,并给出了相应的有限元格式(全量法)求解方程,以此研究原位注热开采油页岩过程中砂质泥岩顶底板内温度场、位移场、渗流场以及物理参数的动态变化规律,发现:(1)在原位注热开采油页岩过程中,砂质泥岩(顶底板)受温度的影响范围在10m以内,且注热井周围受温度的作用最为剧烈,可以推测注热井周围的砂质泥岩(顶底板)可能是危险区域,应重点关注;(2)随着注热时间的增加,在热对流和热传导作用下,油页岩层和顶板岩石的温度不断升高,二者力学性能的弱化不断增加,弹性模量的损伤逐渐增加,导致地层的沉降量不断地增加。当注热时间为60个月时,下沉量最大达到3.80m,且最大位移发生在注热井附近,很有可能导致油气泄露,甚至诱发地表沉陷,在注热井周围为危险区域,应提前做好井壁的保护等;(3)随着注热时间的增加,孔隙压力对砂质泥岩顶底板岩石的影响长度(水平方向)逐渐增加,但孔隙压力的最大影响深度变化不大。当注热时间为60个月时,孔隙压力对砂质泥岩的最大影响深度为2.5m左右,发生在注热井与砂质泥岩的交界处。
肖永刚[5](2021)在《高寒边坡岩体采动响应与多场耦合时效致灾过程研究》文中认为在我国西部高海拔寒区,反复的冻融循环造成岩体物理力学性能不断劣化,严重影响岩体工程的稳定性,随着高寒地区工程建设的进行,冻融灾害问题日益受到重视,开展高寒地区露天矿岩质边坡岩体损伤劣化及时效致灾机理研究既有理论意义又有工程应用价值。本文以新疆和静县备战铁矿挂帮矿边坡为工程背景,采用理论分析、现场探测、室内试验以及数值模拟的综合研究方法,研究高寒边坡岩体采动响应与多场耦合时效致灾过程,获得的主要成果如下:(1)采集备战铁矿东边坡凝灰岩岩样,进行了冻融循环试验、单轴压缩、三轴压缩岩石力学试验和声发射监测试验,研究了高寒边坡凝灰岩在循环加卸载、稳轴压卸围压以及常规应力路径条件下的变形破坏特征,揭示了冻融循环和不同应力路径对岩石损伤破裂的结构劣化及灾变机理。(2)对凝灰岩岩样进行0、20、40、60和80次冻融处理后,通过SHPB试验系统进行了三种不同冲击气压作用下频繁冲击动力扰动试验,获得了冻融凝灰岩试样频繁冲击下的动力学特性,通过超高速照相机以及试验后CT扫描,揭示了冻融凝灰岩在频繁冲击荷载下的宏细观破坏机制。(3)采用NUBOX-6016型智能振动监测仪对备战铁矿挂帮矿边坡进行振动监测,通过萨道夫斯基公式拟合出了边坡爆破振动传播规律,建立了备战铁矿挂帮矿边坡数值模型,分析了挂帮矿边坡在露天爆破振动下的应力、应变和振动速度等动力响应特征,揭示了露天爆破对挂帮矿边坡的影响规律。(4)基于三维激光扫描研究了东帮矿山边坡岩体结构面和结构体空间形态和分布规律;通过考虑冻融劣化效应修正了岩体广义霍克-布朗强度准则中的参数,建立了霍克-布朗冻融损伤强度破坏准则,实现了岩体强度参数随冻融循环次数劣化的时效过程,将修正模型导入COMSOL Multiphysics多物理场分析软件;考虑水冰相变,基于能量守恒方程、质量守恒方程和应力平衡方程建立岩石THM耦合模型,建立了备战铁矿挂帮矿边坡三维地质力学模型,研究了备战铁矿挂帮矿边坡的采动响应及在多场耦合作用下的时效破坏过程。
高琳[6](2021)在《岩石变形破坏过程中的能量演化机制与灾变特征分析》文中研究表明随着地下资源开采深度的增加,深部岩体动力灾害发生的频率和强度显着提高,动力灾害行为更为复杂,灾变机理至今尚不清晰,以至于工程中难以准确预测预报与精准防治。基于应力-应变关系和强度准则角度研究深部岩体动力灾害具有局限性,难以揭示深部灾害的量级、规模、剧烈程度以及灾变形式,而这些恰恰是评价分析深部动力灾害至关重要的指标。研究表明,从能量角度分析深部岩体动力灾害问题更加科学有效。本文针对岩石变形破坏过程中的能量演化机制与灾变特征,从能量演化规律、岩石破坏能量特征的细观结构效应、岩石破坏烈度和能量灾变准则四个方面开展了深入研究。(1)针对五种不同类型岩石分别开展了单轴及7个围压下的全程循环加卸载试验,基于能量平衡理论,提出了岩石峰后能量计算方法,系统地获得了岩石变形破坏全过程的能量演化特性曲线;对比分析了脆塑性岩石的能量演化差异,提出了用以定量描述岩石弹性能积聚特性的表征参数,将岩石的能量演化模式细分为四类;探究了不同岩性岩石能量演化的围压效应,发现不同岩性岩石的能量积聚和耗散特性随围压增加表现出不同的变化模式。(2)基于岩石断裂过程区的剪切破坏理论模型,分析了不同岩性岩石能量演化围压效应的差异,揭示了围压对岩石能量演化特征的微观影响机制;运用X射线分析和电镜扫描等实验手段分析了矿物组分、微观结构及微观断裂模式对岩石能量演化特征的影响,研究表明,岩石组分中脆性矿物比例决定了岩石积聚应变能的能力,岩石抵抗剪切变形的能力和能量耗散的特性取决于岩石内部颗粒的粘合结构以及结晶程度;并通过破坏试样的3D激光扫描实验,探究了岩石能量演化特征与断裂面粗糙度及分形维数之间的关系,发现这两者的相互关系与岩石的微观断裂模式及相应的微观破坏形态密切相关。(3)基于损伤力学理论,提出了表征岩石单位应变弹性能和耗散能变化量的两个指标,能量释放率和能量耗散率;分析了岩石变形破坏过程中能量积聚和耗散的动态过程及其演化规律,首次提出了岩石破坏烈度指数,对岩石破坏剧烈程度进行了定量化表征,并依据试验数据建立了岩石破坏剧烈程度划分标准;随后,基于岩石破裂形式表征方法,探究了岩石破坏烈度与岩石破碎程度、声发射阶跃现象以及岩石破裂角度的关系,为岩石灾变特征分析提供了理论与实验依据。(4)开展了不同岩性岩石的单轴压缩试验,以声发射聚类分析方法建立了岩石损伤本构模型;利用该理论模型给出了岩石临界损伤能量释放率以及破坏烈度的理论表达式,明确了破坏烈度指数的物理意义,进而建立了评定岩石失稳及危险性量级的能量灾变准则;通过岩石三维损伤本构模型,将能量灾变准则推广到三维应力状态。该论文有图106幅,表27个,参考文献228篇。
张英[7](2020)在《水—力耦合作用下裂隙岩体渗流规律与突水机理研究》文中研究表明随着地下工程的不断发展,愈来愈多的地下工程在水-力耦合作用下发生失稳破坏,水-力耦合问题涉及渗流特性的变化规律,亦包括裂隙岩体微裂隙的起裂、变形扩展、贯通机理。目前,水-力耦合作用下裂隙岩体在渐进破坏过程中的力学和渗流特征及耦合机制仍存在空白区。本文以煤层底板突水灾害为研究背景,采用理论分析、室内试验和数值模拟的方法,研究了单裂隙、T型裂隙和Y型裂隙试样的非线性渗流规律,利用声发射监测手段研究了裂隙岩体在水-力耦合作用下的渐进破坏演化机理,在此基础上进一步采用有限元方法模拟了煤层采动作用下煤层底板破裂损伤的变化规律,并提出相应的防治措施。取得的主要研究成果如下:(1)开展不同围压、水压和倾角下的单裂隙、T型裂隙和Y型裂隙砂岩试样的渗流试验,利用福希海默(Forchheimer)方程分析了裂隙砂岩试样在水-力耦合试验过程中压力梯度和流量的非线性特征。发现裂隙影响下,裂隙砂岩试样的非线性曲线凸向压力梯度轴,并且试验加载的围压和试样的裂隙产状对福希海默方程线性项系数a和非线性项系数b产生直接影响。(2)分析惯性阻力系数β和固有渗透率k的关系,提出了裂隙砂岩中流体流动的非线性惯性参数方程,依据归一化导水系数法、压力梯度比法和体积流量比法,确定了线性达西和非线性福希海默的临界压力梯度,得到了不同裂隙产状下压力梯度比等高线以及体积流量比等高线。此外,由围压和渗透率关系确定了裂隙砂岩试样的有效应力系数和耦合系数。(3)基于水-力耦合试验,分析了单裂隙、T型裂隙和Y型裂隙砂岩试样的强度和变形特征、裂纹起裂规律及破坏模式。同时借助RFPA2D-FLOW软件从细观角度获取了多工况条件下试样水-力耦合破坏过程中的裂纹发展过程。结果显示,完整无水压试样的峰值强度大于完整有水压试样及所有含裂隙试样峰值强度,裂隙比水对试样强度的弱化更为突出。完整试样和单裂隙砂岩试样最终破坏模式均呈现典型的剪切破坏,起裂角度具有很好的方向性。T型和Y型裂隙试样的最终破裂呈现出剪切破坏和张拉-剪切破坏两种模式,且破坏过程产生的次生裂隙较单裂隙试样更多。(4)采用声发射技术监测完整砂岩试样和含不同角度裂隙砂岩(单裂隙、T型裂隙和Y型裂隙)试样在水-力耦合压缩破坏过程中的AE振铃计数、RA-AF值、b值及峰频等参数变化特征,分析结果显示AE振铃计数的急剧增加、AE信号峰频密度的突增是试件破坏的前兆信息,b值达到峰值时试样完全破坏,RA-AF值显示试件以剪切破坏为主。(5)基于应力-渗透率-时间曲线,分析了完整、单裂隙、T型裂隙和Y型裂隙试样渗透率在变形破坏过程中的变化规律。裂隙和水流的存在缩短了试样压密到裂纹稳定扩展的过程,试样峰后出现应力突降时渗透率达到极大值,由此确定渗透率突跳系数,为工程尺度的水-力耦合模拟提供关键参数。(6)以羊场湾煤矿为工程背景,运用RFPA2D-FLOW软件建立水-力耦合裂隙模型,引入前文研究获取的有效应力系数、耦合系数和突跳系数,模拟分析了开采扰动与底板含水层水压力联合作用下,底板裂隙岩体从细观损伤演化至宏观“突水通道形成”的破坏过程,揭示了煤层底板破坏突水灾变机制,并提出了相应的控制技术措施,为安全开采提供指导。
殷鹏飞[8](2020)在《川南龙马溪组页岩力学特性及水力压裂机理研究》文中研究表明页岩气是继煤层气、致密砂岩气之后重要的非常规天然气资源,具有开采寿命长、生产周期长、烃类运移距离较短及含气面积大等特点,是目前重要的清洁能源发展方向。水力压裂是将页岩气从页岩中开采出来的一种成熟有效的方法。为了实现天然气在页岩基质中的高效运移,需要采用水力压裂在页岩中形成复杂裂缝网络,这需要对复杂裂缝形成的机理,包括页岩的岩性、物性、力学性质、脆性特征以及水力裂缝扩展延伸机制等方面进行深入系统的研究。本文以四川盆地南缘长宁页岩气产区的页岩为研究对象,采用室内试验、理论分析和离散元数值模拟的方法对页岩各向异性力学行为、脆性评价、渗透特性以及水力裂缝扩展机理等相关课题展开了具体研究。主要研究内容和结论如下:(1)对采集于四川长宁页岩气产区的黑色页岩进行了物理及微观特性分析,通过对不同层理倾角页岩开展常规三轴压缩试验、巴西劈裂试验、三轴循环加卸载试验和卸围压试验,分析了页岩在不同应力加载路径下的强度变形特征,揭示了页岩各向异性破坏行为机理,并提出了一种新的预测层状岩石巴西劈裂破坏行为的准则,该破坏准则能很好地描述含层理结构岩石在不同加载倾角下的破坏特征。(2)基于页岩试样室内试验结果,采用多种脆性评价方法对页岩试样的脆性特征进行了分析研究,并以此为基础,提出了两种新的分别基于应力-应变曲线峰后特征和能量平衡特征的脆性评价指数,新指数能清晰地反映页岩试样在不同层理倾角和不同围压下的脆性变化规律,并以此揭示了页岩脆性程度与其破坏模式之间的定性关系。(3)对不同层理倾角的完整页岩试样和含裂隙面的页岩试样进行了渗透率试验研究,得到的两组页岩渗透率随有效应力增大呈指数函数减小。进一步地,基于理论分析描述了流体在含层理或夹层结构层状岩石中的流动规律,揭示了影响页岩等效渗透率的主控因素,以此建立了能描述岩石渗透率各向异性特征的理论模型,推导了能描述含裂隙面页岩等效渗透率与裂隙面渗透率之间关系的表达式,分别建立了含裂隙面页岩等效渗透率和裂隙面渗透率与有效应力之间的关系。(4)基于室内试验结果进行了PFC2D细观参数分析和标定,建立了页岩数值模型,开展了页岩各向异性力学特性的模拟研究,从细观层面揭示了页岩在不同应力加载路径下的变形破坏机理。进一步地,基于改进的PFC2D流-固耦合算法,开展了页岩水力压裂裂缝扩展机理与分段压裂数值模拟研究,分析了层理倾角、层理面强度、地应力水平对水力裂缝扩展特征的影响规律,揭示了不同侧压力系数和不同层理倾角下页岩试样中水力裂缝与层理面的相互作用机理,得到了水平井分段压裂中水力裂缝网络在垂直面和水平面内的分布形态,由此提出了设计射孔最优间距的参考方法。该论文有图165幅,表34个,参考文献381篇。
刘相如[9](2020)在《断续裂隙岩石常规三轴压缩力学行为及破坏机理研究》文中研究表明经历过长期的地质构造运动,岩体内部通常会包含各种不同类型的缺陷如:断层、节理、孔洞和裂隙等,由于这些缺陷的存在使得岩体结构表现为显着的非均质性、非连续性和各向异性。裂隙岩体一般处于三向受力状态,且裂隙分布和受力状态是影响裂隙岩体力学行为的重要因素。因此,本文采用自主研制的长方体岩石常规三轴压缩及测量装置,结合GCTS岩体动态三轴仪开展三轴压缩下裂隙岩体力学行为的研究,对岩体工程稳定性评价具有重要指导意义。本文依托国家自然科学基金项目(51179189,51734009)和江苏省杰出青年基金项目(BK20150005),以含裂隙红砂岩为研究对象,采用室内试验、数值模拟及理论分析相结合的方法,进行了以下研究工作:(1)采用自主研制的长方体岩石常规三轴压缩及测量装置,结合GCTS岩体动态三轴仪,开展了完整砂岩和单裂隙砂岩的常规三轴压缩试验。单裂隙砂岩的强度随着围压的增大呈线性增大,破坏模式则由张拉劈裂破坏向剪切破坏转变。结合三维CT扫描结果,单轴压缩下试样裂纹分布特征复杂,三轴压缩下具有明显的剪切特征,揭示了单裂隙岩石内部损伤机理。引入裂隙初始损伤变量,建立了裂隙岩石损伤统计本构模型,基于室内试验结果验证了本构模型的正确性。(2)基于单裂隙砂岩损伤破裂机理研究的基础上,开展了共面双裂隙砂岩和非共面双裂隙砂岩的常规三轴压缩试验。结合CT扫描结果,在试样的破裂特征方面,双裂隙砂岩试样较单裂隙砂岩试样表现出明显的三轴压缩破裂特征。双裂隙试样的破裂模式受到预制裂隙的影响较围压影响大,裂隙的分布特征主导试样的最终破裂特征。基于声发射数据,采用K-Means算法进行裂纹类型分析,单轴压缩作用时,岩桥倾角对试样的破裂过程具有显着影响,而在三轴压缩作用时,试样的破坏主要为剪切/混合裂纹主导。(3)采用PFC构建了裂隙砂岩试样,基于完整砂岩的常规三轴压缩室内试验结果进行了细观参数的标定,进而开展了单裂隙砂岩、共面双裂隙砂岩及非共面裂隙砂岩常规三轴压缩模拟,从强度、变形和破坏模式等三方面验证了该数值模拟方法的可行性,为后续分析裂隙岩体损伤破裂机理奠定基础。(4)基于数值模拟方法探究裂隙岩体常规三轴压缩损伤破裂过程,分析微裂纹、位移场及力场的演化过程,从细观层面研究了裂隙倾角、岩桥倾角及围压对裂隙砂岩损伤演化的影响。同时根据微裂纹倾角,定义了6种裂纹类型,其中张拉型微裂纹所占比例最高,拉剪型微裂纹次之,而压缩型微裂纹所占比例最低,其他类型微裂纹所占比例与围压及裂隙几何分布有关,从细观层面上揭示裂隙岩体常规三轴压缩损伤破裂机理。
杨建明[10](2020)在《深部巷道围岩能量场演化机制与吸能锚杆支护机理研究》文中认为资源的深部开采是未来矿业发展的必然趋势,也是我国“深地”规划战略的重要发展方向。众多研究资料表明,深部岩体在高地应力的地质环境中表现出高度的非线性,受强扰动开采时会诱发岩爆、微震等一系列动力灾害,这些灾害的本质是能量非线性演化至灾变的过程,因此,从能量角度出发研究巷道失稳问题更加有效。本文采用理论分析、室内实验、数值模拟和井下试验相结合的研究方法,对深部巷道失稳破坏过程中围岩体能量场演化机制及高阻尼吸能锚杆的动态吸能特性开展了系统研究。(1)围岩变形破坏本质是能量积聚、耗散和释放综合作用结果。在弹性力学理论框架下,根据Hoek-Brown强度准则,推导距临空面不同位置岩体弹性应变能积聚和释放分布规律;由线弹性断裂力学,采用压剪滑移模型研究裂纹扩展的摩擦热能和表面能。考虑到高应力环境下,岩体裂纹尖端塑性变形所耗散塑性能越发凸显,根据双剪统一强度理论确定Ⅰ-Ⅱ复合型裂纹尖端的塑性区边界曲线方程,据此结合弹塑性力学获得了塑性变形的塑性能。基于裂纹扩展能量平衡,结合算例分析各部分能量空间展布。(2)对于岩爆灾害时空演化规律复杂性,开展了不同硐径比的圆形模型巷道双向加载试验再现岩爆现象。试验时辅以微型摄像、声发射、3D-DIC等监测手段,系统获取硐壁破坏形态、空间位置及声发射能量参数等特征参量。由试验研究发现,岩爆演化表现为“能量积聚-能量释放”循环交替,且随着输入能量增加每次循环时间变短、释放能量变多;随着轴向荷载增加,应变场形状呈均匀分布→“X”形→两帮“V”形状演化。(3)考虑到距临空面不同位置岩体内裂隙发育程度和应力状态对围岩积聚与释放机制的影响,采用高温加热制备等效损伤因子D=(0.16、0.36、0.51、0.89)的花岗岩试样。设计了完整花岗岩试样和热损伤花岗岩试样变形破坏过程能量演化特征试验研究,分析了不同应力状态下等效损伤因子对试样力学特征参数、破坏形态、储能能力和耗散能转化速率的影响,同时借助颗粒流软件PFC3D分析与岩石变形破坏相关的细观特征能量阀值,提出了岩体临界支护时机判别方法。(4)针对深部硬岩发生岩爆无明显变形前兆,借鉴高阻尼橡胶材料在抗冲击工程中高阻抗特性,研发一种适用于深部硬岩岩体支护的高阻尼吸能锚杆,以及时吸收和转移冲击能。通过落锤冲击和SHPB冲击试验,研究了冲击速率、冲击频次和厚径比对吸能材料动态力学特性和吸能性能的影响;采用锚杆落锤冲击系统,研究不同规格高阻尼吸能锚杆的动态力学响应和拉伸性能的影响,揭示了高阻尼吸能锚杆缓冲吸能机制。最后,从理论角度出发分析高阻尼吸能锚杆与围岩支护耗能机理,得出支护巷道破坏能量判据。(5)在上述分析的基础上,本文以三山岛-780m水平段巷道稳定性控制为例,以现场实测地应力为边界条件,利用FLAC3D动力模块分析动静荷载下裸巷、普通锚杆和高阻尼吸能锚杆支护下巷道变形破坏规律,初步验证了高阻尼吸能锚杆缓冲吸能支护的有效性。基于此,探索性开展钻孔卸压和高阻尼吸能锚杆联合支护作用机理研究,初步实现了围岩应变能的诱导转移和硬岩趋势的有限位移吸能控制,可望为进一步改善巷道支护,降低岩爆等动力灾害。
二、THE REAL IN TIME CT MONITORING OF THE MESO-DAMAGE EVOLUTION LAW OF SANDSTONE UNDER TRIAXIAL COMPRESSION(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、THE REAL IN TIME CT MONITORING OF THE MESO-DAMAGE EVOLUTION LAW OF SANDSTONE UNDER TRIAXIAL COMPRESSION(论文提纲范文)
(1)动载作用下损伤砂岩的力学特性与破裂特征(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 研究背景及意义 |
1.2 国内外研究现状 |
1.2.1 岩石损伤的表征 |
1.2.2 损伤岩石的力学性能研究 |
1.2.3 爆炸荷载作用下损伤岩体的破裂特征研究 |
1.2.4 目前研究存在的不足 |
1.3 研究内容与研究方法 |
1.3.1 研究内容 |
1.3.2 研究目标 |
1.3.3 研究方法 |
1.3.4 技术路线 |
2 动态荷载作用下损伤岩体的能量演化与破裂特征理论 |
2.1 受载岩体的损伤表征 |
2.1.1 受载岩体的损伤力学模型 |
2.1.2 受载岩体的速度结构演化 |
2.2 冲击荷载作用下损伤岩体的能量演化 |
2.3 爆炸荷载作用下损伤岩体的破裂特征 |
2.3.1 爆炸荷载作用下岩体的破裂特征 |
2.3.2 爆炸荷载作用下损伤岩体的破裂特征 |
2.4 本章小结 |
3 基于声发射检测受载砂岩的损伤、破裂与速度结构演化 |
3.1 概述 |
3.2 试验方案 |
3.3 试验过程 |
3.3.1 试件的制备 |
3.3.2 砂岩的孔隙率 |
3.4 单轴荷载作用下砂岩的损伤与破裂模式 |
3.4.1 试验装置与试验过程 |
3.4.2 砂岩的强度 |
3.4.3 单轴荷载作用下砂岩的声发射特性 |
3.4.4 单轴荷载作用下砂岩的破裂模式 |
3.4.5 单轴荷载作用下砂岩的量化损伤 |
3.5 单轴荷载作用下损伤砂岩的速度结构演化 |
3.6 循环荷载作用下受载砂岩的声发射信号特征 |
3.6.1 试验设备与试验过程 |
3.6.2 试验结果与分析 |
3.7 本章小结 |
4 冲击荷载作用下损伤砂岩的能量演化与破碎特征 |
4.1 损伤砂岩的冲击动力学试验 |
4.1.1 试件的制备 |
4.1.2 试验装置与试验过程 |
4.2 基于CT扫描砂岩损伤的表征 |
4.3 冲击荷载作用下损伤砂岩的强度变化和能量演化 |
4.3.1 动态应力平衡验证 |
4.3.2 损伤砂岩的动态抗压与劈裂抗拉强度分析 |
4.3.3 冲击荷载作用下损伤砂岩的能量演化 |
4.4 冲击荷载作用下损伤砂岩的裂纹扩展 |
4.4.1 冲击荷载压缩作用下损伤砂岩的裂纹扩展和走势 |
4.4.2 冲击荷载劈裂作用下损伤砂岩的裂纹扩展和走势 |
4.5 冲击荷载作用下损伤砂岩的破碎特征与几何分形 |
4.5.1 冲击荷载作用下损伤砂岩的破碎特征 |
4.5.2 冲击荷载作用下破碎岩块的几何分形 |
4.6 本章小结 |
5 爆炸荷载作用下损伤岩体的破裂特征与CT成像 |
5.1 爆炸荷载作用下损伤砂岩的破裂特征试验 |
5.1.1 试件的制备 |
5.1.2 试验设备与试验过程 |
5.2 损伤砂岩的表征 |
5.3 爆炸荷载作用下损伤砂岩的破裂特征 |
5.4 爆炸荷载作用下损伤砂岩的CT成像 |
5.5 本章小结 |
6 结论与展望 |
6.1 主要结论 |
6.2 创新点 |
6.3 展望 |
参考文献 |
致谢 |
作者简介及在校期间主要科研成果 |
作者简介 |
攻读博士学位期间主要的科研成果 |
(2)废弃矿井采空区覆岩裂隙导通机理及多尺度渗流特性研究(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 选题背景及研究意义 |
1.2 国内外研究现状 |
1.2.1 煤岩体力学特性及其变形破裂监测 |
1.2.2 覆岩破断力学机制及裂隙演化特征 |
1.2.3 裂隙面几何形貌特征及其渗流特性研究 |
1.2.4 裂隙煤体孔隙结构及其微观流动特性 |
1.2.5 采空区裂隙网络及其渗流特性研究 |
1.3 研究内容及技术路线 |
1.3.1 研究内容 |
1.3.2 技术路线 |
第2章 单轴压缩条件下煤岩体力学特性及破裂演化规律 |
2.1 试验试件及设备 |
2.1.1 试件制作 |
2.1.2 试验设备 |
2.1.3 试验流程 |
2.2 单轴压缩抗压强度及变形破坏特征 |
2.2.1 应力-应变曲线特征 |
2.2.2 单轴抗压强度 |
2.2.3 破坏模式 |
2.3 煤岩破裂过程中的声发射响应特征 |
2.3.1 破裂过程声发射能量分析 |
2.3.2 声发射事件分布特征空间演化 |
2.4 数字散斑全场应变及动态破裂过程分析 |
2.4.1 不同位置标记点变形规律 |
2.4.2 破裂过程变形场演化分析 |
2.5 本章小结 |
第3章 覆岩破断裂隙通道形成机理及其形态特征 |
3.1 关键块体结构破断力学机制理论分析 |
3.1.1 力学模型的建立及边界条件的确定 |
3.1.2 模型内应力分量解析解 |
3.1.3 破裂迹线/塑性边界方程 |
3.2 主应力场及应变能密度分布特征算例分析 |
3.2.1 基准参数选取及计算过程 |
3.2.2 应力及应变分量分布特征分析 |
3.2.3 不同块体长度的应变能密度分布特征 |
3.3 裂隙通道形态及其张开度特征分析 |
3.3.1 破裂迹线形态特征分析 |
3.3.2 内聚力和内摩擦角对破裂迹线的影响 |
3.3.3 不同块体长度的破断裂隙张开度对比分析 |
3.4 本章小结 |
第4章 三轴加卸载作用下原生裂隙岩体渗流特性研究 |
4.1 试验试件及流程 |
4.1.1 试件制备 |
4.1.2 加卸载渗流试验方案 |
4.1.3 试验系统及测试过程 |
4.2 裂隙岩体渗流特性分析 |
4.2.1 加载路径下渗透压对渗流特性的影响 |
4.2.2 卸载条件下围压对渗流规律的影响 |
4.3 岩石裂隙面三维形貌特征及渗流路径分析 |
4.3.1 三维几何形貌特征 |
4.3.2 裂隙面粗糙度参数定量分析 |
4.3.3 裂隙面优势渗流路径模拟分析 |
4.4 本章小结 |
第5章 裂隙煤体三维重构及微细观渗流机理研究 |
5.1 试验概况 |
5.1.1 样品采集及试验设备 |
5.1.2 裂隙煤体三维重构过程 |
5.2 数字岩心微观孔裂隙结构特征 |
5.2.1 基于 CT 切片的裂缝分布特征 |
5.2.2 三维模型重构及过程分析 |
5.3 煤体孔裂隙结构及微细观渗流特性分析 |
5.3.1 裂隙单元体三维模型重构 |
5.3.2 裂隙单元体孔裂隙分布特征 |
5.3.3 裂隙单元体微观渗流模拟分析 |
5.4 本章小结 |
第6章 废弃矿井采空区裂隙网络水气两相渗流特性研究 |
6.1 采空区覆岩裂隙分布特征 |
6.1.1 相似模拟实验过程 |
6.1.2 覆岩破断裂隙整体形态特征 |
6.1.3 采空区块体破断裂隙特征分析 |
6.2 基于图像识别的裂隙网络统计分析 |
6.2.1 覆岩裂隙提取过程 |
6.2.2 裂隙几何参数统计 |
6.2.3 统计结果分析 |
6.3 采空区裂隙网络水气两相渗流模拟 |
6.3.1 裂隙网络几何模型及计算流程 |
6.3.2 两相裂隙流控制方程与求解方法 |
6.3.3 水气两相渗流计算结果分析 |
6.4 结论 |
第7章 结论与展望 |
7.1 主要结论 |
7.2 创新点 |
7.3 展望 |
参考文献 |
攻读学位期间取得的科研成果 |
致谢 |
(3)冻结裂隙岩体力学特性及冲击动力学响应研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 选题背景及研究意义 |
1.2 国内外研究现状及发展趋势 |
1.2.1 冻结岩石力学特性研究现状 |
1.2.2 冻结裂隙岩体力学破坏研究现状 |
1.2.3 岩石动力学特性研究现状 |
1.2.4 裂隙岩体冲击动力学特性研究现状 |
1.2.5 冻结岩体动力学特性研究现状 |
1.3 主要研究内容 |
1.4 技术路线 |
2 冻结砂岩力学特性与冻结效应 |
2.1 试验方案 |
2.1.1 试样选取与制备 |
2.1.2 基本物理参数测定 |
2.1.3 不同冻结温度下饱和砂岩强度测试 |
2.1.4 不同冻结温度下砂岩未冻水含量测试 |
2.2 不同冻结温度下饱和砂岩强度特性 |
2.2.1 不同冻结温度下砂岩应力应变曲线 |
2.2.2 冻结温度对砂岩强度的影响 |
2.2.3 冻结温度对砂岩弹性模量的影响 |
2.2.4 冻结温度对砂岩抗拉强度的影响 |
2.3 不同冻结温度下饱和砂岩受荷破坏模式 |
2.3.1 单轴压缩条件下的破坏模式 |
2.3.2 巴西劈裂条件下的破坏模式 |
2.4 冻结作用对砂岩力学特性的影响机制 |
2.4.1 饱和砂岩冻结过程中的未冻水含量变化 |
2.4.2 冻结完整砂岩强度与温度的关系 |
2.4.3 冻结作用对砂岩力学特性的效应影响机制 |
2.5 本章小结 |
3 冻结裂隙砂岩静力学特性与主控机制 |
3.1 试验方案 |
3.1.1 试样选取与制备 |
3.1.2 试验装置 |
3.1.3 试验过程 |
3.2 常温下干燥裂隙砂岩压缩强度与破坏过程 |
3.2.1 不同裂隙倾角干燥试样强度及变形特征 |
3.2.2 不同裂隙倾角砂岩压缩破坏过程中的声发射特征 |
3.2.3 常温干燥裂隙砂岩压缩破坏过程分析 |
3.3 常温下饱水裂隙砂岩压缩强度与破坏过程 |
3.3.1 不同裂隙倾角饱水砂岩强度及变形 |
3.3.2 常温饱水裂隙砂岩压缩破坏过程中的声发射特征 |
3.3.3 常温饱水裂隙砂岩压缩破坏过程分析 |
3.4 冻结饱水裂隙砂岩压缩强度与破坏过程 |
3.4.1 不同裂隙倾角冻结饱水试样强度及变形 |
3.4.2 冻结饱水试样压缩破坏过程中的声发射特征 |
3.4.3 冻结饱水试样压缩破坏过程分析 |
3.5 含水(冰)状态对裂隙砂岩压缩破坏特性的影响 |
3.5.1 不同含水状态下裂隙砂岩压缩力学参数 |
3.5.2 含水状态对裂隙砂岩压缩破坏特征的影响机制 |
3.6 冻结作用对裂隙砂岩压缩破坏特性的影响机制分析 |
3.6.1 不同冻结温度下裂隙砂岩力学参数演化特性分析 |
3.6.2 冻结作用下裂隙砂岩损伤机制分析 |
3.7 本章小结 |
4 冻结裂隙砂岩冲击压缩破坏特性与影响机制 |
4.1 冻结裂隙砂岩动态压缩实验 |
4.1.1 试验设备 |
4.1.2 SHPB冲击压缩试验理论 |
4.1.3 试样制备 |
4.1.4 裂隙砂岩动态压缩试验 |
4.2 冻结裂隙砂岩动态压缩力学特性 |
4.2.1 动态压缩试验应力平衡分析 |
4.2.2 冻结裂隙砂岩动态压缩应力应变曲线 |
4.3 冻结温度对裂隙砂岩动态压缩特性的影响 |
4.3.1 动态峰值应力的变化特征 |
4.3.2 动态弹性模量的变化特征 |
4.3.3 动态峰值应变的变化特征 |
4.4 裂隙倾角对裂隙砂岩动态压缩特性的影响 |
4.4.1 动态峰值应力的变化特征 |
4.4.2 动态弹性模量的变化特征 |
4.4.3 动态峰值应变的变化特征 |
4.5 冲击压缩应力分布状态模拟 |
4.5.1 材料本构模型及其参数选取 |
4.5.2 动态压缩数值模拟模型及参数选取 |
4.5.3 裂隙倾角动态压缩模拟分析 |
4.6 不同倾角冻结裂隙砂岩裂纹的成核、扩展与破坏 |
4.6.1 动态破坏过程分析 |
4.6.2 动态破坏形态分析 |
4.7 含裂隙冰应力波传播及裂隙扩展机制分析 |
4.7.1 含冰裂隙的应力波反射透射机制 |
4.7.2 冲击作用下含冰裂隙扩展机制 |
4.8 本章小结 |
5 冻结裂隙砂岩冲击劈裂破坏特性与影响机制 |
5.1 冻结裂隙砂岩冲击劈裂试验 |
5.1.1 实验设备 |
5.1.2 SHPB动态劈裂试验理论 |
5.1.3 试样制备 |
5.1.4 试验方案 |
5.2 冻结裂隙砂岩动态劈裂力学特性 |
5.2.1 动态劈裂试验应力平衡分析 |
5.2.2 冻结裂隙砂岩动态劈裂应力应变曲线 |
5.3 冻结温度对裂隙砂岩冲击劈裂特性的影响 |
5.3.1 动态抗拉强度的变化特征 |
5.3.2 动态弹性模量的变化特征 |
5.3.3 峰值应变的变化特征 |
5.4 裂隙倾角对裂隙砂岩冲击劈裂特性的影响 |
5.4.1 抗拉强度的变化特征 |
5.4.2 动态弹性模量的变化特征 |
5.4.3 峰值应变的变化特征 |
5.5 冲击劈裂应力分布模拟分析 |
5.5.1 冰体模型参数的选取 |
5.5.2 数值模型的建立 |
5.5.3 试样内部应力分布平衡过程 |
5.5.4 砂岩动态劈裂的应力传播过程 |
5.6 不同倾角冻结裂隙砂岩裂纹的成核、扩展与破坏 |
5.7 冻结作用对裂隙砂岩冲击劈裂特性的影响机制 |
5.8 本章小结 |
6 冻结裂隙砂岩动态损伤本构关系及影响因素分析 |
6.1 冻结裂隙砂岩动态损伤特性基础理论 |
6.1.1 颗粒增强微细观损伤理论 |
6.1.2 宏观损伤组合模型基础理论 |
6.2 考虑细观损伤的冻结砂岩动态本构模型构建 |
6.3 考虑宏观缺陷的冻结裂隙砂岩动态本构模型 |
6.4 冻结裂隙砂岩动态损伤本构模型的试验验证 |
6.5 冻结裂隙砂岩动态损伤模型关键参数影响特性分析 |
6.6 本章小结 |
7 结论与展望 |
7.1 结论 |
7.2 创新点 |
7.3 展望 |
致谢 |
参考文献 |
附录 |
(4)高温下砂质泥岩物理力学特性的各向异性演化规律及其应用(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究背景及意义 |
1.2 国内外研究现状 |
1.2.1 高温下岩石的物理力学性质研究现状 |
1.2.1.1 高温下岩石的热物理特性 |
1.2.1.2 高温下岩石的力学性质 |
1.2.2 高温下岩石的微观结构及渗透性研究现状 |
1.2.2.1 高温下岩石的微观结构变化 |
1.2.2.2 高温下岩石的渗透特性 |
1.2.3 高温作用下岩石的各向异性特性研究现状 |
1.2.3.1 岩石物理性质的各向异性 |
1.2.3.2 岩石力学性质的各向异性 |
1.2.4 高温条件下顶板岩石的稳定性研究现状 |
1.3 存在的主要问题 |
1.4 本文主要研究内容及技术路线 |
第2章 高温下各向异性砂质泥岩的物理性质演化规律 |
2.1 引言 |
2.2 试验过程和方法 |
2.2.1 热重试验 |
2.2.2 热膨胀系数试验 |
2.2.3 导热系数试验 |
2.2.4 波速和渗透率试验 |
2.2.5 试验方法 |
2.3 试验结果 |
2.3.1 热重试验结果分析 |
2.3.2 热膨胀系数随温度的变化规律 |
2.3.3 导热系数、比热容和热扩散率随温度的变化关系 |
2.3.4 失重率随温度的变化规律 |
2.3.5 纵波波速随温度的变化规律 |
2.3.6 砂质泥岩的渗透率随温度的变化规律 |
2.4 分析与讨论 |
2.4.1 垂直层理方向的渗透率与温度、体积应力及孔隙压力的关系 |
2.4.2 平行层理方向的渗透率与温度、体积应力及孔隙压力的关系 |
2.5 本章小结 |
第3章 高温三轴应力下各向异性砂质泥岩全应力-应变过程的渗透性试验研究 |
3.1 引言 |
3.2 试验设备及方法 |
3.2.1 试验试样及其制备 |
3.2.2 实验设备 |
3.2.3 试验方法及步骤 |
3.3 试验结果 |
3.3.1 高温作用下砂质泥岩的渗透率变化规律 |
3.3.2 高温作用下砂质泥岩全应力-应变过程的渗透率变化规律 |
3.4 分析与讨论 |
3.4.1 温度对砂质泥岩三轴压缩过程中渗流规律的影响 |
3.4.2 层理对砂质泥岩三轴压缩过程中渗流规律的影响 |
3.4.3 蠕变效应对砂质泥岩三轴压缩过程中渗流规律的影响 |
3.5 本章小结 |
第4章 高温下各向异性砂质泥岩单轴压缩力学性能及声发射特征研究 |
4.1 引言 |
4.2 试验设备及方法 |
4.2.1 试样的制备 |
4.2.2 试验设备 |
4.2.3 试验方法 |
4.3 试验结果 |
4.3.1 高温下砂质泥岩的单轴力学特性 |
4.3.2 高温泥岩单轴压缩过程中声发射性能 |
4.3.3 各向异性对高温砂质泥岩的破裂形式的影响 |
4.4 分析与讨论 |
4.4.1 XRD微观成分分析 |
4.4.2 高温下砂质泥岩的损伤机制分析 |
4.4.3 层理方位对高温砂质泥岩单轴力学性能的影响机制 |
4.4.4 各向异性对砂质泥岩损伤统计本构模型的影响 |
4.5 本章小结 |
第5章 高温下各向异性砂质泥岩抗拉和抗剪特性研究 |
5.1 引言 |
5.2 试验过程及方法 |
5.2.1 试样的制备 |
5.2.2 试验设备及方法 |
5.2.2.1 巴西劈裂试验设备 |
5.2.2.2 变角剪切试验设备 |
5.2.2.3 试验目的及方法 |
5.3 试验结果 |
5.3.1 抗拉试验结果 |
5.3.1.1 加载力与层理面垂直时砂质泥岩的抗拉强度 |
5.3.1.2 加载力与层理面平行时砂质泥岩的抗拉强度 |
5.3.1.3 加载力与层理面正交时砂质泥岩的抗拉强度 |
5.3.2 抗剪试验结果 |
5.3.2.1 剪切面与层理面垂直时砂质泥岩的抗剪强度 |
5.3.2.2 剪切面与层理面平行时砂质泥岩的抗剪强度 |
5.3.2.3 剪切面与层理面正交时砂质泥岩的抗剪强度 |
5.3.2.4 不同温度作用下各向异性砂质泥岩的破坏形式 |
5.4 分析与讨论 |
5.4.1 不同温度作用下各向异性砂质泥岩的抗拉特性分析 |
5.4.2 不同温度作用后各向异性砂质泥岩的抗剪特性分析 |
5.5 本章小结 |
第6章 原位注热开采油页岩过程中砂质泥岩盖层的稳定性研究 |
6.1 引言 |
6.2 原位注热开采油页岩过程中热-流-固耦合数学模型 |
6.2.1 热-力耦合作用下岩石的横观各向同性模型 |
6.2.1.1 横观各向同性模型 |
6.2.1.2 考虑温度损伤的横观各向同性模型 |
6.2.2 热-流-固耦合作用下岩石的渗透率模型 |
6.2.3 热-流-固耦合数学模型 |
6.2.3.1 流固耦合模型 |
6.2.3.2 热流固耦合模型 |
6.3 原位注热开采油页岩过程中热-流-固耦合数学模型的数值解法 |
6.4 原位注热开采油页岩过程中的参数选取及分析 |
6.4.1 几何建模 |
6.4.2 边界条件 |
6.4.3 油页岩和砂质泥岩物性参数的确定 |
6.4.3.1 温度、孔隙压力对岩石孔隙率和渗透率的影响 |
6.4.3.2 温度对岩石导热系数和热膨胀系数的影响 |
6.4.3.3 温度对岩石力学性质的影响 |
6.4.4 温度对流体物理性质的影响 |
6.5 数值模拟结果和分析 |
6.5.1 温度场的动态分布规律 |
6.5.2 位移场的动态分布规律 |
6.5.3 孔隙压力的动态分布规律 |
6.5.4 各向异性砂质泥岩渗透率的动态演化规律 |
6.6 本章小结 |
第7章 结论与展望 |
7.1 结论 |
7.2 展望 |
参考文献 |
攻读学位期间取得的研究成果 |
致谢 |
(5)高寒边坡岩体采动响应与多场耦合时效致灾过程研究(论文提纲范文)
致谢 |
摘要 |
Abstract |
1 引言 |
2 绪论 |
2.1 高海拔寒区岩体室内岩石力学试验研究现状 |
2.1.1 静态试验研究 |
2.1.2 动态试验研究 |
2.2 边坡物理相似模型试验研究现状 |
2.3 高海拔寒区岩体结构数值模拟研究现状 |
2.4 高海拔寒区岩质边坡变形破坏原位监测研究现状 |
2.4.1 声发射(AE)监测 |
2.4.2 遥感监测技术 |
2.4.3 其他原位监测试验 |
2.5 高海拔寒区岩质边坡失稳机理研究现状 |
2.5.1 结构面劣化机理 |
2.5.2 岩体结构变异机理 |
2.5.3 稳定性评价方法 |
2.6 问题的提出 |
2.7 研究内容及技术路线 |
2.7.1 主要研究内容 |
2.7.2 主要研究方法 |
2.7.3 技术路线 |
3 备战铁矿工程地质概况与岩体赋存特征 |
3.1 工程背景 |
3.1.1 工程概况 |
3.1.2 区域地质 |
3.2 矿区及矿床地质特征 |
3.2.1 矿区地层 |
3.2.2 矿区构造 |
3.2.3 水文地质 |
3.3 岩石力学参数 |
3.4 本章小结 |
4 冻融循环条件下凝灰岩静态力学特性研究 |
4.1 不同应力路径下的单轴压缩试验 |
4.1.1 试验方法 |
4.1.2 岩石的冻融损伤特性 |
4.1.3 单轴压缩岩石力学特性 |
4.1.4 凝灰岩声发射特性 |
4.1.5 凝灰岩的损伤本构关系 |
4.2 常规三轴加载试验 |
4.2.1 试验方案 |
4.2.2 应力应变规律分析 |
4.2.3 岩石变形规律分析 |
4.2.4 岩石破裂特征分析 |
4.3 轴向应力恒定的匀速卸围压试验 |
4.3.1 试验方案 |
4.3.2 轴向压力恒定的匀速卸载围压试验 |
4.3.3 卸荷路径下的岩石破裂特征分析 |
4.4 多级循环荷载试验 |
4.4.1 试验方案 |
4.4.2 应力应变响应机制分析 |
4.4.3 变形及破坏特征分析 |
4.5 不同应力路径下破坏规律及机理分析 |
4.6 本章小结 |
5 频繁冲击荷载下冻融凝灰岩动态力学特性研究 |
5.1 试验材料和方法 |
5.1.1 试样制备 |
5.1.2 试验仪器与方法 |
5.2 力学特性结果分析 |
5.2.1 动态应力-应变曲线特征 |
5.2.2 峰值应力特征 |
5.2.3 峰值应变特征 |
5.2.4 动态弹性模量特征 |
5.3 变形与破坏特征分析 |
5.3.1 平均应变率特征 |
5.3.2 频繁冲击后的破坏模式 |
5.4 冻融循环与冲击荷载作用下的损伤分析 |
5.5 本章小结 |
6 挂帮矿边坡在露天爆破振动下的响应研究 |
6.1 高寒边坡爆破振动波实测 |
6.1.1 工程概况 |
6.1.2 爆破测振 |
6.2 边坡爆破振动稳定性数值模拟 |
6.2.1 建立模型 |
6.2.2 结果及分析 |
6.3 本章小结 |
7 岩体冻融损伤劣化模型 |
7.1 挂帮矿边坡结构面智能识别 |
7.1.1 获取点云数据 |
7.1.2 岩体结构面智能识别 |
7.1.3 获取结构面信息 |
7.1.4 结构面信息统计 |
7.2 考虑冻融劣化的霍克-布朗修正模型 |
7.2.1 霍克-布朗准则方程 |
7.2.2 适用于高寒岩体的霍克-布朗强度准则 |
7.3 本章小结 |
8 高寒边坡多场耦合时效致灾演化过程数值模拟研究 |
8.1 岩体温度-渗流-应力耦合方程的建立 |
8.1.1 温度场控制方程 |
8.1.2 渗流场控制方程 |
8.1.3 应力场控制方程 |
8.1.4 考虑相变问题 |
8.2 备战铁矿边坡稳定性分析 |
8.2.1 建立多场耦合数值模型 |
8.2.2 多场耦合作用下挂帮矿开采的结果与分析 |
8.2.3 冻融循环对挂帮矿边坡的影响分析 |
8.3 本章小结 |
9 结论与展望 |
9.1 结论 |
9.2 创新点 |
9.3 展望 |
参考文献 |
作者简历及在学研究成果 |
学位论文数据集 |
(6)岩石变形破坏过程中的能量演化机制与灾变特征分析(论文提纲范文)
致谢 |
摘要 |
abstract |
变量注释表 |
1 绪论 |
1.1 研究背景及意义 |
1.2 研究现状 |
1.3 研究内容与创新点 |
1.4 研究方案与技术路线 |
2 基于能量理论的岩石变形破坏特征分析 |
2.1 引言 |
2.2 岩石变形破坏过程中的能量形式 |
2.3 能量损伤理论 |
2.4 岩石破裂形式和程度表征 |
2.5 岩石能量演化的微观机制 |
2.6 小结 |
3 岩石变形破坏过程中的能量演化规律 |
3.1 引言 |
3.2 应变能密度计算方法 |
3.3 单轴加载下不同岩性岩石的能量演化 |
3.4 不同围压下不同岩性岩石的能量演化 |
3.5 本章小结 |
4 岩石破坏能量特征的细观结构效应 |
4.1 引言 |
4.2 围压对岩石能量演化的影响机制分析 |
4.3 岩石能量特征与岩石组分的关联 |
4.4 岩石能量特征与断口微观形貌的关联 |
4.5 岩石能量特征与断裂面粗糙度的关联 |
4.6 小结 |
5 基于能量演化规律的岩石破坏烈度研究 |
5.1 引言 |
5.2 能量释放率和能量耗散率定义 |
5.3 单轴加载下不同岩性岩石的破坏烈度分析 |
5.4 不同围压下不同岩性岩石的破坏烈度分析 |
5.5 本章小结 |
6 岩石失稳破裂的能量灾变准则研究 |
6.1 引言 |
6.2 不同岩性岩石的损伤演化分析 |
6.3 岩石失稳破裂的能量灾变准则 |
6.4 本章小结 |
7 结论与展望 |
7.1 结论 |
7.2 展望 |
参考文献 |
作者简历 |
学位论文数据集 |
(7)水—力耦合作用下裂隙岩体渗流规律与突水机理研究(论文提纲范文)
致谢 |
摘要 |
Abstract |
1 引言 |
1.1 选题背景 |
1.2 研究意义 |
2 文献综述与研究内容 |
2.1 水-力耦合作用下裂隙岩体力学特性研究 |
2.2 水-力耦合作用下裂隙岩体渗流特性研究 |
2.3 水-力耦合作用下裂隙岩体变形破坏全过程研究 |
2.4 水-力耦合作用下裂隙岩体变形破坏数值模拟研究 |
2.5 水-力耦合研究存在的问题 |
2.6 研究内容及技术路线 |
2.6.1 主要研究内容 |
2.6.2 技术路线 |
3 水-力耦合作用下裂隙岩体渗流特性试验研究 |
3.1 材料选取及物理力学特征 |
3.1.1 材料选取、试样加工及细观测试 |
3.1.2 试样孔隙度及孔径测试 |
3.2 试验方案、设备及步骤 |
3.2.1 试验方案 |
3.2.2 试验设备及步骤 |
3.3 基于福希海默方程的非线性渗流行为分析 |
3.3.1 裂隙砂岩非线性渗流行为分析 |
3.3.2 福希海默系数的参数表达式 |
3.4 有效评估达西定律的适用性方法 |
3.4.1 归一化导水系数法 |
3.4.2 压力梯度比法 |
3.4.3 体积流量比法 |
3.5 福希海默系数探讨及裂隙砂岩渗流特性对比分析 |
3.5.1 福希海默系数探讨及物理意义 |
3.5.2 渗流特性对比分析 |
3.6 水-力耦合机制分析 |
3.6.1 有效应力系数确定 |
3.6.2 渗透率与法向应力关系分析 |
3.7 本章小结 |
4 水-力耦合作用下裂隙岩体变形破坏机制研究 |
4.1 试验方案、设备及步骤 |
4.1.1 试验方案 |
4.1.2 试验设备及步骤 |
4.2 水-力耦合作用下裂隙砂岩力学特性 |
4.2.1 裂隙砂岩渐进破坏应力-应变关系 |
4.2.2 裂隙砂岩渐进破坏阈值确定 |
4.2.3 强度特性分析 |
4.2.4 变形特性分析 |
4.3 基于声发射裂隙砂岩变形破坏演化规律 |
4.3.1 声发射监测技术及设备 |
4.3.2 基于声发射时序特征参数的变形破坏特征分析 |
4.3.3 基于声发射频域特征参数的变形破坏特征分析 |
4.4 水-力耦合作用下裂隙砂岩破坏模式分析 |
4.4.1 裂纹破坏类型分析 |
4.4.2 裂隙砂岩破坏模式分析 |
4.5 水-力耦合作用下裂隙砂岩变形破坏过程数值模拟研究 |
4.5.1 水-力耦合数值模型构建及参数设置 |
4.5.2 水-力耦合作用下裂隙砂岩数值模拟研究 |
4.6 本章小结 |
5 水-力耦合作用下裂隙岩体变形破坏中渗透率演化研究 |
5.1 水压加载设备及方法 |
5.2 裂隙砂岩变形破坏过程中渗透率的演化规律 |
5.2.1 渗透率、应力与时间关系分析 |
5.2.2 不同倾角下渗透率的变化规律 |
5.2.3 渗透率与偏应力关系分析 |
5.3 裂隙砂岩变形破坏过程中渗透率演化的数值模拟研究 |
5.4 本章小结 |
6 水-力耦合作用下底板突水通道形成机制及防治措施 |
6.1 工程概况 |
6.2 工程地质与水文地质 |
6.2.1 工程地质特征 |
6.2.2 水文地质情况 |
6.3 水-力耦合作用下裂隙岩体渐进破坏过程理论模型 |
6.3.1 水-力耦合控制方程 |
6.3.2 渗流与损伤耦合控制方程 |
6.4 煤层底板渐进破坏与渗流演化数值模拟研究 |
6.4.1 底板突水过程数值模型构建及参数 |
6.4.2 不同形状裂隙对底板破裂模式与渗流场的影响 |
6.4.3 组合裂隙下底板渐进破裂与渗流演化模拟结果分析 |
6.5 煤层底板裂隙岩体突水防治建议措施 |
6.6 本章小结 |
7 结论与展望 |
7.1 主要工作及结论 |
7.2 本文创新点 |
7.3 研究展望 |
参考文献 |
作者简历及在学研究成果 |
学位论文数据集 |
(8)川南龙马溪组页岩力学特性及水力压裂机理研究(论文提纲范文)
致谢 |
摘要 |
abstract |
变量注释表 |
1 绪论 |
1.1 研究背景及意义 |
1.2 国内外研究现状 |
1.3 主要研究目标与内容 |
1.4 研究方法及技术路线 |
2 页岩的物理及微观特性研究 |
2.1 页岩取样 |
2.2 试验测试系统 |
2.3 页岩物理及微观特性分析 |
2.4 本章小结 |
3 页岩的强度、变形及破坏特性试验研究 |
3.1 页岩常规三轴压缩试验研究 |
3.2 页岩巴西劈裂试验研究 |
3.3 页岩三轴循环加卸载试验研究 |
3.4 页岩三轴卸围压试验研究 |
3.5 本章小结 |
4 基于室内试验的页岩脆性评价方法研究 |
4.1 页岩脆性评价的方法 |
4.2 基于不同评价方法的页岩脆性特征分析 |
4.3 页岩脆性特征与破坏模式的关系讨论 |
4.4 本章小结 |
5 完整和含裂隙页岩渗透特性试验研究 |
5.1 试验原理和程序 |
5.2 完整页岩渗透特性分析 |
5.3 裂隙页岩渗透特性分析 |
5.4 本章小结 |
6 页岩的强度、变形及破坏机理离散元模拟研究 |
6.1 PFC2D程序简介 |
6.2 页岩数值模型的建立及细观参数标定 |
6.3 页岩常规三轴压缩模拟结果分析 |
6.4 页岩循环加卸载模拟结果分析 |
6.5 页岩卸围压模拟结果分析 |
6.6 本章小结 |
7 页岩水力裂缝扩展机理及应用研究 |
7.1 PFC2D中流-固耦合的实现 |
7.2 页岩水力压裂裂缝扩展机理研究 |
7.3 页岩储层水平井分段压裂应用研究 |
7.4 本章小结 |
8 结论与展望 |
8.1 主要结论 |
8.2 主要创新点 |
8.3 研究展望 |
参考文献 |
作者简历 |
学位论文数据集 |
(9)断续裂隙岩石常规三轴压缩力学行为及破坏机理研究(论文提纲范文)
致谢 |
摘要 |
Abstract |
变量注释表 |
1 绪论 |
1.1 问题的提出及研究意义 |
1.2 国内外研究现状 |
1.3 主要研究内容与技术路线 |
2 断续单裂隙砂岩常规三轴压缩力学行为试验研究 |
2.1 试验材料与试验程序 |
2.2 完整砂岩三轴压缩试验结果 |
2.3 单裂隙砂岩力学特性分析 |
2.4 单裂隙砂岩破坏特征分析 |
2.5 裂隙岩体损伤统计本构模型 |
2.6 本章小结 |
3 断续双裂隙砂岩常规三轴压缩力学行为试验研究 |
3.1 常规三轴压缩试验方案 |
3.2 常规三轴压缩下共面双裂隙砂岩力学行为试验研究 |
3.3 常规三轴压缩下非共面双裂隙砂岩力学行为试验研究 |
3.4 基于声发射的双裂隙砂岩裂纹演化机制分析 |
3.5 本章小结 |
4 断续裂隙砂岩常规三轴压缩宏观力学行为数值模拟研究 |
4.1 数值模拟方法 |
4.2 完整砂岩常规三轴压缩宏观力学特性模拟结果 |
4.3 断续单裂隙砂岩常规三轴压缩宏观力学特性模拟结果 |
4.4 断续共面双裂隙砂岩常规三轴压缩宏观力学特性模拟结果 |
4.5 断续非共面双裂隙砂岩常规三轴压缩宏观力学特性模拟结果 |
4.6 本章小结 |
5 断续裂隙砂岩常规三轴压缩细观破裂机理数值模拟研究 |
5.1 完整砂岩常规三轴压缩细观破裂机理模拟结果 |
5.2 断续单裂隙砂岩常规三轴压缩细观破裂机理模拟结果 |
5.3 断续共面双裂隙砂岩常规三轴压缩细观破裂机理模拟结果 |
5.4 断续非共面双裂隙砂岩细观破裂机理模拟结果 |
5.5 本章小节 |
6 裂隙岩体深埋引水隧洞工程应用 |
6.1 裂隙岩体深埋引水隧洞工程背景 |
6.2 裂隙岩体深埋引水隧洞数值模型的建立 |
6.3 裂隙岩体深埋引水隧洞围岩变形破坏机理分析 |
6.4 本章小节 |
7 结论与展望 |
7.1 主要结论 |
7.2 主要创新点 |
7.3 研究展望 |
参考文献 |
作者简历 |
学位论文数据集 |
(10)深部巷道围岩能量场演化机制与吸能锚杆支护机理研究(论文提纲范文)
致谢 |
摘要 |
Abstract |
1 引言 |
1.1 选题背景 |
1.2 研究意义 |
1.3 论文背景 |
2 国内外研究现状 |
2.1 深部巷道围岩变形破坏能量场演化研究现状 |
2.1.1 围岩变形过程能量演化理论研究 |
2.1.2 围岩变形过程物理模型试验研究 |
2.1.3 含裂隙岩石变形过程能量演化研究 |
2.2 深部巷道稳定性控制方法研究 |
2.2.1 巷道支护理论研究 |
2.2.2 联合支护方法研究 |
2.2.3 吸能锚杆性能及支护研究 |
2.3 研究内容及技术路线 |
2.3.1 主要研究内容 |
2.3.2 技术路线 |
3 深部巷道围岩破裂过程能量积聚与耗散机制研究 |
3.1 岩石变形破坏过程能量转化 |
3.2 围岩破裂过程能量积聚与释放 |
3.2.1 弹性能分布特征 |
3.2.2 能量释放特征 |
3.3 围岩破裂过程能量耗散规律 |
3.3.1 计算模型 |
3.3.2 塑性变形耗散的塑性能 |
3.3.3 初始裂纹滑移耗散的摩擦能 |
3.3.4 裂纹扩展消耗的表面能 |
3.4 算例分析 |
3.5 本章小结 |
4 基于深部地应力环境巷道围岩变形能量演化试验研究 |
4.1 试验观测系统原理与试验方案 |
4.1.1 试验观测系统 |
4.1.2 试样制备方案 |
4.1.3 试验过程 |
4.2 加载过程中硐壁宏观破裂演化规律 |
4.2.1 洞壁破裂演化分析 |
4.2.2 岩爆演化分析 |
4.3 加载过程中围岩能量耗散演化规律 |
4.3.1 围岩变形过程中能量耗散规律 |
4.3.2 围岩变形过程中破裂机制分析 |
4.4 加载过程中围岩变形场空间分布规律 |
4.4.1 围岩应变场演化分析 |
4.4.2 围岩应变场分布规律 |
4.5 本章小结 |
5 含裂隙岩石变形过程能量特征试验研究 |
5.1 深部含裂隙岩石应力场环境 |
5.1.1 含裂隙岩石所处应力场分析 |
5.1.2 岩石变形过程能量计算方法 |
5.2 完整岩石变形破坏过程能量演化分析 |
5.2.1 试验概述 |
5.2.2 单轴加载下岩石能量演化分析 |
5.2.3 三轴加载下岩石能量演化分析 |
5.3 含裂隙岩石变形破坏过程能量演化分析 |
5.3.1 试验设备和控制方法 |
5.3.2 含裂隙花岗岩制备方法及试样制备 |
5.3.3 单轴加载下含裂隙岩石能量演化分析 |
5.3.4 三轴加载下含裂隙岩石能量演化分析 |
5.4 岩石变形破坏特征能量阀值分析 |
5.4.1 数值模拟的建立 |
5.4.2 特征能量参数的确定 |
5.4.3 特征能量参数的演化规律 |
5.5 本章小结 |
6 高储能围岩体吸能支护高阻尼吸能锚杆研究 |
6.1 深埋巷道围岩锚杆支护适用性分析 |
6.1.1 岩爆对巷道支护结构破坏形态分析 |
6.1.2 岩爆对围岩支护结构功能要求 |
6.2 吸能材料动力学特性试验研究 |
6.2.1 试验方案与原理 |
6.2.2 吸能材料缓冲性能分析 |
6.2.3 吸能材料吸能性能分析 |
6.2.4 吸能材料缓冲吸能效果分析 |
6.3 高阻尼吸能锚杆动力学特性试验研究 |
6.3.1 高阻尼吸能锚杆简介 |
6.3.2 试验装置及原理 |
6.3.3 试验过程及实验现象 |
6.3.4 锚杆冲击力时程分析 |
6.3.5 锚杆冲击变形量分析 |
6.4 高阻尼吸能锚杆支护机理 |
6.4.1 深埋巷道围岩稳定性控制思路 |
6.4.2 高阻尼吸能锚杆支护结构吸能机理分析 |
6.5 本章小结 |
7 深埋巷道围岩稳定性吸能支护工程应用研究 |
7.1 三山岛金矿地质与应力场环境特征 |
7.1.1 工程地质环境 |
7.1.2 研究区地应力环境 |
7.1.3 研究区巷道支护现状 |
7.2 数值计算模型 |
7.2.1 模拟目的与内容 |
7.2.2 计算模型及模型参数 |
7.2.3 计算边界及计算方案 |
7.2.4 监测点布置 |
7.3 不同支护手段下巷道稳定性控制研究 |
7.3.1 无支护巷道冲击破坏过程分析 |
7.3.2 锚杆支护巷道冲击破坏过程分析 |
7.3.3 “卸压+锚杆”支护巷道冲击破坏过程分析 |
7.4 本章小结 |
8 结论与展望 |
8.1 主要结论 |
8.2 创新点 |
8.3 展望 |
参考文献 |
作者简历及在学研究成果 |
学位论文数据集 |
四、THE REAL IN TIME CT MONITORING OF THE MESO-DAMAGE EVOLUTION LAW OF SANDSTONE UNDER TRIAXIAL COMPRESSION(论文参考文献)
- [1]动载作用下损伤砂岩的力学特性与破裂特征[D]. 郑强强. 安徽理工大学, 2021(02)
- [2]废弃矿井采空区覆岩裂隙导通机理及多尺度渗流特性研究[D]. 张纯旺. 太原理工大学, 2021(01)
- [3]冻结裂隙岩体力学特性及冲击动力学响应研究[D]. 赵涛. 西安科技大学, 2021
- [4]高温下砂质泥岩物理力学特性的各向异性演化规律及其应用[D]. 曹孟涛. 太原理工大学, 2021(01)
- [5]高寒边坡岩体采动响应与多场耦合时效致灾过程研究[D]. 肖永刚. 北京科技大学, 2021(08)
- [6]岩石变形破坏过程中的能量演化机制与灾变特征分析[D]. 高琳. 中国矿业大学, 2021(02)
- [7]水—力耦合作用下裂隙岩体渗流规律与突水机理研究[D]. 张英. 北京科技大学, 2020
- [8]川南龙马溪组页岩力学特性及水力压裂机理研究[D]. 殷鹏飞. 中国矿业大学, 2020
- [9]断续裂隙岩石常规三轴压缩力学行为及破坏机理研究[D]. 刘相如. 中国矿业大学, 2020
- [10]深部巷道围岩能量场演化机制与吸能锚杆支护机理研究[D]. 杨建明. 北京科技大学, 2020