一、高等数学中的数学美之探(论文文献综述)
杨梅[1](2021)在《高职数学融合美育的路径与策略》文中提出高等数学作为理工科和经济管理等相关学科专业的重要基础课,在高职教育中具有特殊的地位和优势,是实现各专业人才培养目标的一个重要载体。对于广大从事高职数学教学的一线教师而言,需要通过不断总结和挖掘数学之美,引导学生去感受数学之美,创造有助于培育审美情趣的教学环境,利用课堂主渠道优化数学美育教学模式,采用以美导学的教学策略完成数学美育的各个环节,从而提高学生的学习兴趣,促使学生热爱数学,提升审美情趣,养成科学的思维方法,从严谨中体验数学的艺术之美。
胡梦薇,李东方[2](2021)在《论数学美学在高等数学教学中的体现》文中指出近年来,高职院校学生对高等数学课程的学习兴趣不高,如果教师能自主地研究数学美并有意识地将数学美与课堂教学相结合,将有助于激发学生的学习兴趣,提高高等数学的教学效果。
熊妍茜,杨梅[3](2021)在《高职院校数学与美育融合的影响因素探析——基于学生视角的SEM模型实证研究》文中研究指明高职院校是我国高等教育中的重要组成部分,承载着为国家培养大量高素质应用型人才的使命。德智体美劳全面发展是国家层面对新时代教育的根本要求,数学作为一门基础性学科,与美育融合已成为近年来的教学研究热点。通过问卷调查,利用SEM模型的方法对影响数学与美育融合的各个因素之间的作用机制进行了分析,提出促进高职院校数学与美育融合,需要广大教师继续挖掘数学的实用美,聚焦高职数学的职教特色;需要统筹规划教学资源建设,打造数学与美育融合新环境;需要完善数学美育培训长效机制,提升教师综合素质;需要加大数学美育宣传力度,促进学生全面发展。
焦继超[4](2021)在《“课程思政”视域下高中数学教学设计研究 ——以预备知识主题为例》文中指出推动课程思政建设是新时代对高中生思想政治教育改革创新的重要措施。高中数学教师需要思考,在课程思政视域下如何进行教学设计,把立德树人落实于教学中,不仅达到知识传授、能力提高的目的,更重要的是在价值引领下使其有机融合。在文献研究基础上,确立人的全面发展理论、人本主义学习理论以及隐性教育理论为理论基础,通过调查了解高中数学教学设计中落实课程思政教育目标的现状与问题,运用理论研究、案例研究和行动研究等方法,以预备知识主题为例,通过教学设计及实践,探索高中数学学科践行课程思政的原则与方法。研究表明高中数学教师对课程思政认同度高,但实践操作层面存在差异,做好相关培训和管理评价是未来值得关注的问题;学生对于课程思政元素融入的态度积极,数学成绩平均分高于对照班,但未形成显着性差异。课程思政视域下教学设计要遵循导向性、自然性、过程性以及情感性等原则。导向性是指教师需明确政治立场,坚定政治方向,按照国家要求的育人方向培养新时代的高中生;自然性是指教师在教学设计中自然地融入课程思政;过程性是指教师需随着学生的发展,将课程思政理念落实到教学设计及实践;情感性是指教师在教学设计时应充分考虑师生互动过程中的情感要素。课程思政视域下高中数学教学策略包括:充分挖掘教学内容中的课程思政元素,做好教学设计各环节,渗透学科课程思政,营造特色课堂文化。
孙贺[5](2021)在《课程思政视域下高中数学教学研究 ——以“函数模型的应用”专题为例》文中进行了进一步梳理“课程思政”对于落实立德树人根本任务,发挥好每门课程的育人功能,构建全员全程全方位育人格局,培养德智体美劳全面发展的社会主义建设者和接班人具有重要的作用。以高中“函数模型的应用”专题的教学内容为例,探索专题教学中融入课程思政的问题。在文献研究基础上,在数学教学中落实课程思政的目标,划分维度为数学品格、文化素养和价值理念三个一级指标,在每个一级指标下又设置四个二级指标;编制学生调查问卷、教师访谈提纲,对课程思政在高中数学课程中的实施情况展开调查;完成课程思政视域下的“函数模型的应用”专题教学设计与实践,分析对数学学习成绩的影响,并提出教学建议。研究表明:(1)编制的调查问卷折半信度、内容效度以及结构效度较好,可作为测量高中数学教学融入课程思政水平的调查工具;(2)实验班和对照班的学习成绩不存在显着性差异,即教学中落实课程思政目标不会对学生成绩产生消极影响;(3)参与教学实践的学生数学品格、文化素养、价值理念三个一级维度的水平均有所提升,其中数学品格的提升效果最明显,文化素养、价值引领的显着性效果依次减弱,育人效果得以彰显。践行课程思政理念,数学教学应做好以下工作:(1)丰富课程思政交流形式,提升教师思政育人意识;(2)以数学为基点联系社会热点,拓宽教师思政储备;(3)分阶段制定思政育人目标,学科间共享思政成果;(4)利用信息技术创新课堂形式,于互动中达到育人实效;(5)弘扬优秀文化与先进事迹,营造良好思政环境;(6)质性评价与定量评价相结合,细化思政考核方式。
陆奕纯[6](2021)在《初等数学教学借鉴高等数学教学法的初探》文中指出高校教师在实际教学中发现初等数学与高等数学衔接方面存在问题,尤其是大一新生,一入学就面临着微积分等核心基础课程的学习,但是仍然只习惯于高中的教学模式,不适应高等数学的教学模式,为此,大学教师额外进行各种改革以迁就学生适应和过渡.另一方面,随着新课改的实施,在教学内容上已有高等数学下放的趋势,这就为高中教学过程中部分地采用大学的教学模式提供了机会.本文将从教学方法角度出发,初步探索一个新的研究方向:初等数学教学借鉴高等数学教学法.通过对当前大学和高中教学方法使用情况的访谈调查,根据所得数据分析两种教学方法在使用上的差异:一个是偏重习题训练,另一个是围绕基本概念进行教学.然后,本文结合访谈内容从理解性教学的角度,借鉴高等数学教学法对高中教学提出7种策略,建议以“思”代“练”来减少习题,通过探索创新来理解知识点.以高中教学内容“数列与数学归纳法”为例,仅采用“斐波那契数列”为例题,重组整章内容进行教学,强调基本概念和知识点的理解与拓展,从而实现两者在教学模式上的衔接.
李超[7](2021)在《“高观点”下高中导数解题及教学研究》文中研究表明随着普通高中数学课程改革不断深入,《普通高中数学课程标准(2017年版2020年修订)》指出数学教师要理解与高中数学关系密切的高等数学内容,能够从更高的观点理解高中数学知识的本质,这对从事数学教育工作者的本体性知识(学科知识)提出了更高的要求.导数是连接高等数学和初等数学的重要桥梁,且部分导数试题的命制具有一定高等数学的背景.因此,这项研究选取高中导数内容,在“高观点”的指导下重点研究以下三个问题:(1)揭示部分高考导数试题具有的高等数学背景;(2)如何将高等数学的思想、观点和方法渗透到中学数学中去;(3)通过具体案例展示如何在“高观点”的指导下进行高中导数内容的解题和教学.这项研究通过对高中教师和学生的问卷调查,在“高观点”指导下研究高中导数内容的解题和教学,得出了以下两方面的结论:在解题方面,整理分析了近十年(以全国卷为主)具有高等数学背景的高考导数试题,导数试题的命题背景主要有四个方面:以高等数学中的基本定义和性质为命题背景、以高等数学中的重要定理和公式为命题背景、以着名不等式为命题背景、以高等数学中的重要思想方法为命题背景;总结了用“高观点”解决高考导数试题时常犯的四类错误:知识性错误、逻辑性错误、策略性错误、心理性错误;提出五项解题方法:创设引理破难题、洛氏法则先探路、导数定义避超纲、构造函数显神通、多元偏导先找点.在教学方面,通过对高中学生和高中教师进行问卷调查分析,从前人研究的基础上,提出“高观点”下高中导数教学的三个特点:衔接性、选择性、引导性;认为“高观点”下高中导数的教学应遵循四项基本的教学原则:严谨性原则、直观性原则、因材施教原则、量力性原则;提出相应的五项教学策略:开发例题,拓展升华策略、引入四规则,知识呈现多样化策略、先实践操作,后说理策略、融合信息技术,直观解释策略、引导方向,自主学习策略.
沈中宇[8](2021)在《面向教师教育的数学知识研究 ——以S市高中数学教研员为例》文中认为百年大计,教育为本。教育大计,教师为本。教师培养的关键是教师教育,要改善教师教育的效果,教师教育者的作用无疑是至关重要的,因此,数学教师教育者在数学教师教育中发挥着重要的作用。近年来,数学教育研究者开始关注数学教师教育者的研究,其中,“面向教师教育的数学知识”(Mathematical Knowledge for Teaching Teachers,简称MKTT)理论为研究一般数学教师教育者所需要的数学知识提供了借鉴。但已有的研究中对于“面向教师教育的数学知识”仍然缺乏清晰准确的刻画,同时,相关研究主要集中在理论构建,相关的实证研究较少。基于以上原因,本文以面向教师教育的数学知识为研究主题,选取高中数学教研员作为研究对象,主要探讨以下三个研究问题:(1)构成面向教师教育的数学知识的要素有哪些?(2)高中数学教研员具备哪些面向教师教育的数学知识?(3)在数学教研活动中,高中数学教研员反映出哪些面向教师教育的数学知识?针对本研究的三个研究问题,将研究设计分为三个阶段,分别为文献分析与框架确立、问卷调查与深度访谈以及现场观察与案例分析。文献分析与框架确立阶段采用了专家论证法。首先通过文献分析梳理已有的数学教师教育者专业知识框架,接着通过对相关的成分和子类别的反复比较,构建初始的面向教师教育的数学知识框架,最后通过三轮专家论证得到最终的面向教师教育的数学知识框架。问卷调查与深度访谈阶段采用了问卷调查法和深度访谈法。其中选取了高中数学中重要的数学主题编制了调查问卷和访谈提纲,通过编码分析高中数学教研员的问卷回答和访谈实录,从而了解高中数学教研员具备的面向教师教育的数学知识。现场观察与案例分析采用了案例研究法。其中观察了不同的高中数学教研员的多次教研活动,在观察过程中对教研活动进行录音并在观测后对高中数学教研员进行访谈,对录音和访谈材料进行编码和统计,从而剖析高中数学教研员在教研活动中反映的面向教师教育的数学知识。本研究的基本结论是:1.构成面向教师教育的数学知识的要素包括4个成分与12个子类别。构成成分为学科内容知识、教学内容知识、高观点下的数学知识和数学哲学知识。学科内容知识包含的子类别为一般内容知识、专门内容知识和关联内容知识,教学内容知识包含的子类别为内容与学生知识、内容与教学知识和内容与课程知识,高观点下的数学知识包含的子类别为学科高等知识、学科结构知识和学科应用知识,数学哲学知识包含的子类别为本体论知识、认识论知识和方法论知识。2.高中数学教研员具备的面向教师教育的数学知识情况如下。(1)高中数学教研员在学科内容知识、教学内容知识、高观点下的数学知识和数学哲学知识4个成分中并不存在明显的短板;(2)高中数学教研员对不同知识成分的掌握存在一定差异,其中,在学科内容知识和教学内容知识2个方面掌握较好,而在高观点下的数学知识和数学哲学知识2个方面还有所欠缺;(3)高中数学教研员在各个知识成分中有以下具体理解:在学科内容知识方面,对于基本的概念、定理和公式的合理性以及不同概念、定理和公式之间的联系较为熟悉;在教学内容知识方面,对于学生有关特定数学内容学习的困难,不同数学内容的教授方式和相关数学内容在教科书中的编排理解较深;在高观点下的数学知识方面,能够对中学数学知识作出一定程度的推广、涉猎不同学科中数学知识的应用;在数学哲学知识方面,能够大致解释数学定义的基本作用和标准、数学研究的动力、数学证明的作用和价值以及数学的基本思想方法。(4)高中数学教研员在各个知识成分中有以下欠缺之处:在学科内容知识方面,对于定义的多元性、解释的多样性和联系的普遍性方面还有进步的空间;在教学内容知识方面,对于学生数学学习困难的细致理解、不同数学内容的深入教授和教学内容编排意图的全面考虑还有提升的余地;在高观点下的数学知识方面,从高观点理解中学数学知识、分析不同知识的联系和在不同学科中应用数学知识方面还有较多需要完善的地方;在数学哲学知识方面,还不能形成系统的理解。3.在数学教研活动中,高中数学教研员反映出的面向教师教育的数学知识情况如下。(1)高中数学教研员反映的面向教师教育的数学知识大部分属于教学内容知识和学科内容知识,小部分属于数学哲学知识和高观点下的数学知识。(2)高中数学教研员在数学教研活动中的主要知识来源为一般内容知识、内容与教学知识、学科高等知识和方法论知识。(3)高中数学教研员在数学教研活动中反映的面向教师教育的数学知识主要有:在学科内容知识方面有数学中的基本概念、定理、公式和性质及其由来、表征、证明及解释;不同数学概念、定理、公式之间的联系。在教学内容知识方面有学生对特定数学内容理解存在的困难;不同数学内容的引入、辨析、应用和小结的教学方法;特定数学内容在课程标准中的要求和在教科书中的编排。在高观点下的数学知识方面有中学数学课程中的数学概念在高等数学中的推广;高观点下不同数学概念之间的联系;数学知识在现代科学和实际生活中的应用。在数学哲学知识方面有对数学定义的认识;对数学认识过程的理解;推理论证在数学中的作用;数学研究的思想方法。本研究对于教师教育者专业标准的制订、数学教师教育者专业培训的设计和数学教师专业发展项目的规划有一定启示,后续可以在数学教师教育者的专业知识、数学教师教育者的专业发展和数学教师教育者的工作实践等方面进一步开展研究。
田源[9](2021)在《高等数学教学中数学文化的融入策略》文中指出高等数学是一门逻辑性较强的公共基础课,其理论和方法被广泛应用于众多学科领域.通过分析数学文化的内涵和必要性,从数学文化的积累、数学起源的追溯、数学之美的欣赏以及数学知识的应用4个方面,阐述了高等数学教学中数学文化的融入策略.
邹明迪[10](2020)在《初中数学教材中数学文化的比较研究 ——以人教版、浙教版和新加坡版为例》文中提出数学文化在教育界热度高涨的原因在于其文化价值得到广泛认可。在初等数学教育中,关于数学文化一系列的研究主要以教材、课堂教学等为载体,教学过程的进行又主要以课程标准为导向。新加坡作为发达国家,其国力发展与国民文化教育分不开,其数学教育在国际测试中连续位居前列,故受到国际广泛关注,并且与中国都地处东亚,均受东亚文化熏陶,文化历史相似。鉴于此,本论文以人民教育出版社、浙江教育出版社、新加坡教育出版社三版不同初中数学教材中的数学文化内容为研究对象,借鉴他人研究框架来研究三版教材中数学文化内容分布的异同点,同时还从数学美侧面对案例中数学原理内容所体现的数学美表现形式做出分析。得到如下结论:(1)整体上,三版教材中数学文化内容占比多数在习题栏目,占比均超过60%,而其他栏目中数学文化的占比较少。在非正文和引入栏目占比总和中,人教版(30.29%)和浙教版(27.42%)均高于新加坡DM版(14.10%),而在例题和习题栏目占比总和中,新加坡DM版(85.89%)高于国内人教版(69.71%)和浙教版(72.59%)。总的来说,在栏目分布上,三版教材的数学文化内容都不均匀。(2)数学文化的数量最多的是新加坡DM版(1779处),其次是浙教版(518处)和人教版(449处)。在三版初中数学教材中,数学与现实生活的数量都是最多的,接着依次是数学与科学技术、数学史、数学与人文艺术,三版教材都不够注重人文艺术的内容。(3)在课程内容分类中,国内两版教材之间在课程内容的四个部分的占比接近,新加坡DM版在数与代数(57.28%)、统计与概率(28.61%)这两部分占比均高于人教版(57.28%和22.27%)、浙教版(54.83%和23.98%),相反地,在图形与几何和综合与实践部分却比国内两版都低。(4)三版教材中数学史的运用方式集中在附加式和顺应式,复制式次之,点缀式最少。从整体上看,三版教材中的数学史内容的四个运用方式占比不均衡,均以附加式为主,均高于51%,也体现教材中数学史与数学知识之间大部分是分离的,附加的方式还会导致部分数学史的作用被弱化,容易被遗忘使用。其他数学文化的运用方式中,三版教材可分离型部分的占比均高于49.89%,反映了教材中数学知识与数学文化结合度较低。(5)三个版本教材关于三个案例的数学原理内容中包含的简洁美和统一美的内容最多,人教版(64处)、浙教版(49处)、新加坡DM版(63处),对称美和奇异美的内容相比较少,人教版(均是9处)、浙教版(8处和6处)、新加坡DM版(均是7处)。且三个案例中的数学原理内容多数集中在定义、性质、定理中,对于公理、公式、法则上的分布很少。基于文章的结论,给出以下建议:首先,在编写教材时三个版本的教材需综合优缺点,尽可能均衡数学文化在划分栏目中的分布。其次在三版教材中“数学与现实生活”数量突出的情形下,建议三版教材都需要适当增设“数学史”、“数学与人文艺术”、“数学与科学技术”三类的相关内容,来均衡分布水平。然后三版教材要弱化以“附加式”为主的情形,增强“顺应式”、“复制式”、“点缀式”三种数学史的运用方式,均衡“数学史”内容的运用水平;对于其他数学文化内容的运用方式,在侧重将数学文化与教材有机融合的同时,可适当地增设外在型的文化内容。最后由于三版教材数学原理呈现出简洁美和统一美的内容居多,而对称美和奇异美的内容相对较少,建议三版教材结合各案例数学知识,适当进行调整,均衡四种数学美表现形式的数量。同时教师在使用教材时可强化学生对对称美和奇异美的认识,四者齐头并进。综上,希望能得到广大数学教材编辑者的重视。
二、高等数学中的数学美之探(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、高等数学中的数学美之探(论文提纲范文)
(1)高职数学融合美育的路径与策略(论文提纲范文)
一、引言 |
二、高职院校学生数学学习与课堂美育的现状 |
(一)学生数学基础相对较差 |
(二)学生学习数学的兴趣相对低迷 |
(三)教师对学科美育理论与实践基础薄弱 |
三、高职数学融合美育的实践途径与策略 |
(一)造有助于培育审美情趣的教学环境美 |
1. 主动创造教室的外在环境美。 |
2. 善用信息化手段创设视听环境。 |
3. 营造民主和谐的课堂内在环境。 |
(二)利用课堂主渠道优化数学美育教学模式 |
1. 挖掘教学资源中的美,丰富教学资源。 |
2. 多种教学手段和模式引导学生发现、欣赏数学美。 |
(三)采用以美导学的教学策略完成数学美育“五环节” |
1. 概念教学策略。 |
2. 定理与公式教学策略。 |
3. 习题教学策略。 |
4. 实施通专融合,展现数学的应用之美。 |
5. 利用数学建模,实现数学美的创造。 |
(2)论数学美学在高等数学教学中的体现(论文提纲范文)
一、数学语言的简洁美 |
二、数学内容的和谐统一美 |
三、数学形式的对称美 |
四、数学思想的奇异美 |
五、结语 |
(3)高职院校数学与美育融合的影响因素探析——基于学生视角的SEM模型实证研究(论文提纲范文)
1 研究设计 |
1.1 研究对象 |
1.2 研究方法 |
1.3 研究工具 |
1.4 模型假设 |
2 研究结果分析与讨论 |
2.1 基于学生视角,数学与美育融合的基本情况 |
2.2 高职院校数学与美育融合的影响因素模型检验 |
2.2.1 测量模型检验 |
(1)信度检验 |
(2)聚敛效度 |
(3)区分效度 |
2.2.2 结构模型检验 |
2.3 模型假设检验及影响效应分析 |
3 研究结论与策略分析 |
3.1 继续挖掘数学的实用美,聚焦高职数学的职教特色 |
3.2 统筹规划教学资源建设,打造数学与美育融合新环境 |
3.3 完善数学美育培训长效机制,提升教师综合素质 |
3.4 加大数学美育宣传力度,促进学生全面发展 |
(4)“课程思政”视域下高中数学教学设计研究 ——以预备知识主题为例(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 问题提出 |
1.2 研究意义 |
1.3 研究内容、思路与方法 |
1.4 论文结构及创新点 |
第二章 文献综述、核心概念界定及理论基础 |
2.1 文献综述 |
2.2 核心概念界定 |
2.3 理论基础 |
第三章 研究设计 |
3.1 研究假设 |
3.2 研究工具 |
3.3 研究对象 |
3.4 研究过程 |
第四章 调查研究 |
4.1 教师问卷调查 |
4.2 教师访谈调查 |
第五章 教学设计 |
5.1 课程思政视域下教学设计理念 |
5.2 预备知识主题教学内容设计 |
5.3 教学设计示例 |
第六章 实践研究 |
6.1 实践对象选取 |
6.2 实践过程分析 |
6.3 实践效果分析 |
6.4 实践总结 |
第七章 课程思政视域下高中数学教学设计的原则与方法 |
7.1 课程思政视域下高中数学教学设计的原则 |
7.2 课程思政视域下高中数学教学设计的方法 |
第八章 结论、建议与展望 |
8.1 结论 |
8.2 建议 |
8.3 展望 |
参考文献 |
附录1 教师调查问卷 |
附录2 教师访谈提纲 |
附录3 学生调查问卷 |
致谢 |
(5)课程思政视域下高中数学教学研究 ——以“函数模型的应用”专题为例(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 问题的提出 |
1.2 核心概念界定 |
1.2.1 课程思政 |
1.2.2 函数模型 |
1.3 研究目的与意义 |
1.3.1 研究目的 |
1.3.2 理论意义 |
1.3.3 实践意义 |
1.4 研究思路与方法 |
1.4.1 研究思路 |
1.4.2 研究方法 |
1.5 研究重点、难点及创新点 |
1.5.1 研究重点 |
1.5.2 研究难点 |
1.5.3 研究创新点 |
1.6 论文结构 |
第二章 文献综述、理论基础与框架 |
2.1 文献综述 |
2.1.1“课程思政”的研究现状 |
2.1.2“课程思政”在数学教学中的体现 |
2.1.3 函数模型的教学价值 |
2.1.4 函数模型的教学设计 |
2.2 理论基础 |
2.2.1 马克思关于人的全面发展理论 |
2.2.2 认知负荷理论 |
2.3 理论框架 |
2.3.1 课程思政视域下高中数学教学研究理论框架 |
2.3.2 高中数学课程思政维度划分的理论框架 |
第二章 研究设计 |
3.1 研究假设 |
3.2 研究对象 |
3.3 研究工具 |
3.3.1 教师访谈提纲 |
3.3.2 学生调查问卷 |
3.3.3 学生前测试卷 |
3.3.4 学生后测试卷 |
3.3.5 学生后测问卷 |
3.4 数据处理 |
第四章 “函数模型的应用”专题教学设计 |
4.1 教学设计目标 |
4.2 教学设计构思 |
4.3 教学设计原则 |
4.4 教学时间安排与进度 |
4.5 教学设计示例 |
第五章 “函数模型的应用”专题教学问卷与访谈分析 |
5.1 课程思政的融入对学生成绩的影响结果分析 |
5.2 课程思政视域下高中数学教学情况的总体特征 |
5.3 课程思政视域下专题教学的前后差异比较分析 |
5.3.1 前后测总体数据的配对样本t检验分析 |
5.3.2 数学品格维度的前后测数据的配对样本t检验分析 |
5.3.3 文化素养维度的前后测数据的配对样本t检验分析 |
5.3.4 价值理念维度的前后测数据的配对样本t检验分析 |
5.4 教师访谈结果分析 |
第六章 讨论、结论与建议 |
6.1 讨论 |
6.1.1 关于课程思政的融入对学生成绩影响的讨论 |
6.1.2 关于专题教学整体实践效果的讨论 |
6.1.3 关于课程思政各个子维度的实践效果比较研究 |
6.2 结论 |
6.3 建议 |
6.3.1 丰富课程思政交流形式,提升教师思政育人意识 |
6.3.2 以数学为基点联系社会热点,拓宽教师思政储备 |
6.3.3 分阶段制定思政育人目标,学科间共享思政成果 |
6.3.4 利用信息技术创新课堂形式,于互动中达到育人实效 |
6.3.5 弘扬优秀文化与先进事迹,营造良好思政环境 |
6.3.6 质性评价与定量评价相结合,细化思政考核方式 |
6.4 不足与展望 |
参考文献 |
附录 |
附录一 教师访谈提纲(教学设计前) |
附录二 教师访谈提纲(教学实践后) |
附录三 学生预测试调查问卷(第一版) |
附录四 学生预测试调查问卷(第二版) |
附录五 学生正式前测调查问卷 |
附录六 学生正式后测调查问卷 |
附录七 专家意见表 |
附录八 专家评价表 |
附录九 学生后测试题 |
致谢 |
(6)初等数学教学借鉴高等数学教学法的初探(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究背景 |
1.2 研究现状 |
1.2.1 传统应试思想仍普遍存在 |
1.2.2 初等数学与高等数学的衔接问题 |
1.2.3 初等数学与高等数学的内容衔接 |
1.3 文献综述 |
1.3.1 中学教育与高等教育的衔接 |
1.3.2 中学数学与高等数学教学的衔接与策略 |
1.4 研究问题 |
1.5 研究意义 |
第2章 初等数学与高等数学教学方法的调查与分析 |
2.1 数据分析 |
2.2 调查结果再分析 |
2.3 高中数学与高等数学教学方法使用的比较 |
第3章 借鉴高等数学教学法的高中数学教学策略研究 |
3.1 类化教学 |
3.2 多角度理解本质 |
3.2.1 语言表达角度 |
3.2.2 表格角度 |
3.2.3 几何(图像)角度 |
3.2.4 代数角度 |
3.3 多知识点串联 |
3.4 趣味引申 |
3.5 合理运用阅读材料和探究与实践 |
3.6 培养分析的思维方式 |
3.7 高中与高等数学教师加强沟通 |
第4章 借鉴高等数学教学法的高中数学教学 |
4.1 斐波那契数列的起源 |
4.2 斐波那契数列与递推关系 |
4.3 斐波那契数列与极限 |
4.4 斐波那契数列与通项公式 |
4.5 斐波那契数列与前n项和 |
4.6 斐波那契数列与算法 |
第5章 借鉴高等数学教学法的高中数学教学拓展 |
5.1 递推数列与函数 |
5.2 递推数列与方程 |
5.3 换元法 |
5.4 极限思想与几何 |
第6章 总结与展望 |
6.1 总结 |
6.2 优势与不足 |
6.3 展望 |
参考文献 |
附录 A 高等数学的课时调查 |
附录 B 初等数学的课时调查 |
附录 C 访谈提纲 |
致谢 |
(7)“高观点”下高中导数解题及教学研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究的背景 |
1.1.1 数学教师专业素养发展的需要 |
1.1.2 优秀高中学生自身发展的需求 |
1.1.3 导数在高中数学教学及高考中的地位 |
1.2 核心名词界定 |
1.2.1 高观点 |
1.2.2 导数 |
1.2.3 数学教学 |
1.2.4 解题 |
1.3 研究的内容和意义 |
1.3.1 研究的内容 |
1.3.2 研究的意义 |
1.4 研究的思路 |
1.4.2 研究计划 |
1.4.3 研究的技术路线 |
1.5 论文的结构 |
第2章 文献综述 |
2.1 文献搜集 |
2.2 高观点下中学数学的研究现状 |
2.2.1 国外研究的现状 |
2.2.2 国内的研究现状 |
2.3 高观点下高中导数的研究现状 |
2.3.1 国外研究的现状 |
2.3.2 国内研究的现状 |
2.4 文献述评 |
2.5 小结 |
第3章 研究设计 |
3.1 研究的目的 |
3.2 研究的方法 |
3.2.1 文献研究法 |
3.2.2 问卷调查法 |
3.2.3 案例研究法 |
3.3 研究工具及研究对象选取 |
3.4 研究伦理 |
3.5 小结 |
第4章 调查研究及结果分析 |
4.1 教师调查问卷的设计及结果分析 |
4.1.1 调查问卷设计 |
4.1.2 实施调查 |
4.1.3 调查结果分析 |
4.1.3.1 问卷的信度分析 |
4.1.3.2 问卷的效度分析 |
4.1.3.3 问卷的结果分析 |
4.2 学生调查问卷的设计及结果分析 |
4.2.1 调查问卷设计 |
4.2.2 实施调查 |
4.2.3 调查结果及分析 |
4.3 调查结论 |
4.4 小结 |
第5章 “高观点”下高中导数的解题研究 |
5.1 “高观点”下高考导数试题的命题背景 |
5.1.1 以高等数学中的基本定义和性质为命题背景 |
5.1.1.1 高斯函数 |
5.1.1.2 函数的凹凸性 |
5.1.2 以高等数学中的重要定理或公式为命题背景 |
5.1.2.1 洛必达法则 |
5.1.2.2 拉格朗日中值定理 |
5.1.2.3 拉格朗日乘数法 |
5.1.2.4 柯西中值定理 |
5.1.2.5 柯西函数方程 |
5.1.2.6 泰勒公式与麦克劳林公式 |
5.1.2.7 极值的第三充分条件 |
5.1.2.8 两个重要极限 |
5.1.2.9 欧拉常数 |
5.1.3 以着名不等式为命题背景 |
5.1.3.1 伯努利不等式 |
5.1.3.2 詹森不等式 |
5.1.3.3 对数平均不等式 |
5.1.3.4 斯外尔不等式 |
5.1.3.5 惠更斯不等式 |
5.1.3.6 约当不等式 |
5.1.4 以高等数学中的重要思想方法为命题背景 |
5.1.4.1 极限思想 |
5.1.4.2 积分思想 |
5.1.4.3 (常微分)方程思想 |
5.2 “高观点”下高考导数解题中常见的四类错误 |
5.2.1 知识性错误 |
5.2.1.1 柯西中值定理的误用 |
5.2.1.2 拉格朗日中值定理的误用 |
5.2.1.3 多元函数求最值,不注意边界情况 |
5.2.1.4 不注意洛必达法则使用的前提 |
5.2.2 逻辑性错误 |
5.2.2.1 循环论证 |
5.2.2.2 混淆充分条件和必要条件的逻辑关系 |
5.2.3 策略性错误 |
5.2.4 心理性错误 |
5.3 “高观点”下高考导数解题的方法 |
5.3.1 创设引理破难题 |
5.3.2 洛氏法则先探路 |
5.3.3 导数定义避超纲 |
5.3.4 构造函数显神通 |
5.3.5 多元偏导先找点 |
5.4 “高观点”下高考导数解题研究的案例 |
5.4.1 “高观点”视角研究解题方法 |
5.4.2 “高观点”视角研究试题的命制 |
5.5 小结 |
第6章 “高观点”下高中导数的教学研究 |
6.1 “高观点”下高中导数教学的教学特点 |
6.1.1 衔接性 |
6.1.2 选择性 |
6.1.3 引导性 |
6.2 “高观点”下高中导数教学的教学原则 |
6.2.1 严谨性原则 |
6.2.2 直观性原则 |
6.2.3 因材施教原则 |
6.2.4 量力性原则 |
6.3 “高观点”下高中导数教学的教学策略 |
6.3.1 开发例题,拓展升华策略 |
6.3.2 引入四规则,知识呈现多样化策略 |
6.3.3 先实践操作,后说理策略 |
6.3.4 融合信息技术,直观解释策略 |
6.3.5 引导方向,自主学习策略 |
6.4 “高观点”下高中导数的教学案例 |
6.4.1 常微分方程视角下的教学案例 |
6.4.2 微积分视角下的教学案例 |
6.4.3 “泰勒公式”的教学案例 |
6.5 小结 |
第7章 结论与反思 |
7.1 研究的结论 |
7.2 研究的不足及展望 |
7.3 结束语 |
参考文献 |
附录 A 教师调查问卷 |
附录 B 学生调查问卷 |
攻读学位期间发表的论文和研究成果 |
致谢 |
(8)面向教师教育的数学知识研究 ——以S市高中数学教研员为例(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究背景 |
1.1.1 教师教育者的专业发展需要关注 |
1.1.2 数学教师教育者的研究值得重视 |
1.1.3 数学教师教育者的专业知识有待探索 |
1.2 研究问题 |
1.3 研究意义 |
1.3.1 理论意义 |
1.3.2 实践意义 |
1.4 论文结构 |
第2章 文献述评 |
2.1 数学教师教育者的专业知识 |
2.1.1 数学教师教育者的专业知识框架 |
2.1.2 数学教师教育者的专业知识测评 |
2.1.3 文献小结 |
2.2 数学教师教育者的专业发展 |
2.2.1 数学教师教育者的专业发展框架 |
2.2.2 数学教师教育者的专业发展调查 |
2.2.3 文献小结 |
2.3 数学教师教育者的工作实践 |
2.3.1 数学教师教育课堂的学习任务框架 |
2.3.2 数学教师教育课堂的学习任务实践 |
2.3.3 文献小结 |
2.4 文献述评总结 |
第3章 研究方法 |
3.1 研究设计 |
3.1.1 文献分析与框架确立 |
3.1.2 问卷调查与深度访谈 |
3.1.3 现场观察与案例分析 |
3.2 研究对象 |
3.2.1 专家论证对象 |
3.2.2 问卷调查对象 |
3.2.3 深度访谈对象 |
3.2.4 案例研究对象 |
3.3 研究工具 |
3.3.1 论证手册 |
3.3.2 调查问卷 |
3.3.3 访谈提纲 |
3.3.4 观察方案 |
3.4 数据收集 |
3.4.1 专家论证 |
3.4.2 问卷调查 |
3.4.3 深度访谈 |
3.4.4 现场观察 |
3.5 数据分析 |
3.5.1 专家论证 |
3.5.2 问卷与访谈 |
3.5.3 现场观察 |
第4章 研究结果(一):面向教师教育的数学知识框架 |
4.1 文献分析 |
4.1.1 已有框架选取 |
4.1.2 相关成分析取 |
4.1.3 相关类别编码 |
4.2 框架构建 |
4.2.1 相关类别合并 |
4.2.2 相应成分生成 |
4.2.3 初步框架构建 |
4.3 框架论证 |
4.3.1 第一轮论证 |
4.3.2 第二轮论证 |
4.3.3 第三轮论证 |
第5章 研究结果(二):高中数学教研员具备的面向教师教育的数学知识 |
5.1 学科内容知识 |
5.1.1 一般内容知识 |
5.1.2 专门内容知识 |
5.1.3 关联内容知识 |
5.2 教学内容知识 |
5.2.1 内容与学生知识 |
5.2.2 内容与教学知识 |
5.2.3 内容与课程知识 |
5.3 高观点下的数学知识 |
5.3.1 学科高等知识 |
5.3.2 学科结构知识 |
5.3.3 学科应用知识 |
5.4 数学哲学知识 |
5.4.1 本体论知识 |
5.4.2 认识论知识 |
5.4.3 方法论知识 |
5.5 总体分析 |
5.5.1 学科内容知识 |
5.5.2 教学内容知识 |
5.5.3 高观点下的数学知识 |
5.5.4 数学哲学知识 |
第6章 研究结果(三):数学教研活动中反映的面向教师教育的数学知识 |
6.1 案例1 |
6.1.1 第一轮观察:平均值不等式 |
6.1.2 第二轮观察:对数的概念 |
6.1.3 案例1 总体分析 |
6.2 案例2 |
6.2.1 第一轮观察:幂函数的概念 |
6.2.2 第二轮观察:函数的基本性质 |
6.2.3 案例2 总体分析 |
6.3 案例3 |
6.3.1 第一轮观察:幂函数的概念 |
6.3.2 第二轮观察:出租车运价问题 |
6.3.3 案例3 总体分析 |
6.4 案例4 |
6.4.1 第一轮观察:反函数的概念 |
6.4.2 第二轮观察:反函数的图像 |
6.4.3 案例4 总体分析 |
6.5 跨案例分析 |
6.5.1 学科内容知识 |
6.5.2 教学内容知识 |
6.5.3 高观点下的数学知识 |
6.5.4 数学哲学知识 |
6.5.5 案例总体分析 |
第7章 研究结论及启示 |
7.1 研究结论 |
7.1.1 面向教师教育的数学知识框架 |
7.1.2 高中数学教研员具备的面向教师教育的数学知识 |
7.1.3 高中数学教研活动中反映的面向教师教育的数学知识 |
7.2 研究启示 |
7.2.1 教师教育者的专业标准制订需要关注学科性 |
7.2.2 数学教师教育者的专业培训需要提升针对性 |
7.2.3 数学教师专业发展项目规划需要增加多元性 |
7.3 研究局限 |
7.4 研究展望 |
7.4.1 拓展数学教师教育者的专业知识研究 |
7.4.2 深入数学教师教育者的专业发展研究 |
7.4.3 延伸数学教师教育者的工作实践研究 |
参考文献 |
附录 |
附录1 论证手册(第一轮) |
附录2 论证手册(第二轮) |
附录3 论证手册(第三轮) |
附录4 调查问卷(第一版) |
附录5 调查问卷(第二版) |
附录6 调查问卷(第三版) |
附录7 调查问卷(第四版) |
附录8 调查问卷(第五版) |
附录9 访谈提纲 |
附录10 观察方案 |
作者简历及在学期间所取得的科研成果 |
致谢 |
(9)高等数学教学中数学文化的融入策略(论文提纲范文)
1 数学文化的内涵与特征 |
1.1 数学文化的内涵 |
1.2 数学文化的特征 |
1.2.1 历史文化的延续性 |
1.2.2 思想方法的渗透性 |
1.2.3 理性思维的自主性 |
1.2.4 抽象严谨的科学性 |
1.2.5 简洁深刻的思想性 |
1.2.6 美与理的统一性 |
2 高等数学教学中融入数学文化的必要性 |
2.1 数学文化是高等数学教学内容的重要组成部分 |
2.2 融入数学文化有利于提高学生学习高等数学的兴趣 |
2.3 融入数学文化有利于学生对高等数学教学知识点的理解和运用 |
2.4 融入数学文化有利于大学生创新能力的培养 |
3 高等数学教学中融入数学文化的策略 |
3.1 积累数学文化知识 |
3.2 追溯数学的起源 |
3.3 欣赏数学之美 |
3.4 灵活运用数学知识 |
(10)初中数学教材中数学文化的比较研究 ——以人教版、浙教版和新加坡版为例(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究的背景 |
1.1.1 国际测试中新加坡数学教育优势明显 |
1.1.2 国际教材比较的重要性 |
1.1.3 课程标准中对数学文化的重视 |
1.1.4 数学文化的教育价值 |
1.1.5 教材中数学文化的研究现状 |
1.2 核心名词界定 |
1.3 研究的问题和目的 |
1.3.1 研究问题 |
1.3.2 研究目的 |
1.4 研究意义 |
1.5 研究思路与论文结构 |
1.5.1 研究思路 |
1.5.2 论文结构 |
第2章 文献综述 |
2.1 文献搜集的途径 |
2.2 数学文化的相关研究 |
2.2.1 国外数学文化的相关研究 |
2.2.2 国内数学文化研究的现状 |
2.2.3 数学美的相关研究 |
2.3 数学教材比较的相关研究 |
2.3.1 中新数学教材比较研究现状 |
2.3.2 国内教材中数学文化的比较研究 |
2.3.3 国内外教材中数学文化的比较研究 |
2.4 章末小结 |
第3章 研究方案设计 |
3.1 研究的对象选取 |
3.1.1 教材总体结构 |
3.1.2 教材章节内容结构 |
3.1.3 小结 |
3.2 研究的理论依据 |
3.2.1 主观意义文化理论 |
3.2.2 教科书评价理论 |
3.3 研究方法的选取 |
3.4 文本分析的理论框架 |
3.4.1 显性数学文化内容比较框架 |
3.4.2 数学文化内容其他侧面比较框架 |
第4章 教材中数学文化内容的比较分析 |
4.1 三版教材中的数学文化栏目的分布和统计 |
4.2 三版教材中的数学文化内容的分布和统计 |
4.2.1 数学史 |
4.2.2 数学与现实生活 |
4.2.3 数学与人文艺术 |
4.2.4 数学与科学技术 |
4.3 三版教材中的数学文化课程内容的分布和统计 |
4.4 三版教材中的数学文化在年级中的分布 |
4.5 三版教材中的数学文化的运用水平 |
4.5.1 数学史的运用水平 |
4.5.2 其他数学文化内容的运用水平 |
4.6 章末小结 |
第5章 教材中数学文化内容其他侧面的案例比较 |
5.1 案例的选取 |
5.1.1 案例1:数与代数——二次函数 |
5.1.2 案例2:图形与几何——圆 |
5.1.3 案例3:统计与概率——数据的分析和概率初步 |
5.2 三版教材中的数学美 |
5.2.1 二次函数案例 |
5.2.2 圆案例 |
5.2.3 数据的分析和概率初步案例 |
5.3 章末小结 |
第6章 结论与建议 |
6.1 研究结论 |
6.1.1 教材中数学文化内容的比较分析结论 |
6.1.2 教材中数学文化其他侧面的案例比较分析结论 |
6.2 研究建议 |
6.3 研究反思 |
6.3.1 创新点 |
6.3.2 不足 |
6.3.3 展望 |
参考文献 |
攻读学位期间发表的论文和研究成果 |
致谢 |
四、高等数学中的数学美之探(论文参考文献)
- [1]高职数学融合美育的路径与策略[J]. 杨梅. 河北职业教育, 2021(05)
- [2]论数学美学在高等数学教学中的体现[J]. 胡梦薇,李东方. 产业与科技论坛, 2021(14)
- [3]高职院校数学与美育融合的影响因素探析——基于学生视角的SEM模型实证研究[J]. 熊妍茜,杨梅. 深圳信息职业技术学院学报, 2021(03)
- [4]“课程思政”视域下高中数学教学设计研究 ——以预备知识主题为例[D]. 焦继超. 天津师范大学, 2021(09)
- [5]课程思政视域下高中数学教学研究 ——以“函数模型的应用”专题为例[D]. 孙贺. 天津师范大学, 2021(10)
- [6]初等数学教学借鉴高等数学教学法的初探[D]. 陆奕纯. 上海师范大学, 2021(07)
- [7]“高观点”下高中导数解题及教学研究[D]. 李超. 云南师范大学, 2021(08)
- [8]面向教师教育的数学知识研究 ——以S市高中数学教研员为例[D]. 沈中宇. 华东师范大学, 2021(08)
- [9]高等数学教学中数学文化的融入策略[J]. 田源. 鞍山师范学院学报, 2021(02)
- [10]初中数学教材中数学文化的比较研究 ——以人教版、浙教版和新加坡版为例[D]. 邹明迪. 云南师范大学, 2020(01)